Предисловие

Благодарим Вас за выбор частотного преобразователя SL9!

Преобразователи частоты SL9, изготовленные с применением самых современных технологий, имеют следующие особенности:

1. Несколько классов напряжения

Номенклатура преобразователей охватывает приборы с однофазным питанием от сети 220 V, трехфазным питанием от сети 220 V, 380 V, 480 V, 690 V и 1140 V.

2. Поддержка нескольких типов моторов

Преобразователи позволяют управлять в векторном режиме работой трехфазных асинхронных AC моторов и синхронными трехфазными AC моторами с ротором на постоянных магнитах (PMSM).

3. Различные режимы управления

Преобразователи поддерживают четыре режима управления: векторное управление без датчика (SFVC), векторное управление с датчиком (CLVC), вольт-частотное управление и независимое вольт-частотное управление.

4. Несколько протоколов обмена данными

Обеспечивается поддержка следующих протоколов: Modbus-RTU, Profibus-DP, CANopen.

5. Поддержка нескольких типов энкодеров

К преобразователям могут подключаться энкодеры различных типов, таких как дифференциальные энкодеры, энкодеры с открытым коллектором, энкодеры ресолверного типа, энкодеры типа UVW.

6. Улучшенный алгоритм векторного управления

Реализован быстрый отклик, улучшенные силовые характеристики на низких, поддержка управления моментом. Все это полностью изменит Ваше впечатление от использования устройства.

Преобразователь частоты SL9 — это долговечный и мощный продукт, и мы предоставим качественное обслуживание для наших клиентов!

До распаковки, пожалуйста, проверьте следующее:

- Соответствие обозначения товара на этикетке Вашему заказу. Наличие в коробке частотного преобразователя, инструкции.
- Отсутствие видимых повреждений в процессе транспортировки. При обнаружении повреждений, немедленно свяжитесь с местным дистрибьютором.

Первое использование

Если Вы ранее не использовали этот продукт, до начала эксплуатации необходимо внимательно ознакомиться с настоящей инструкцией. При возникновении сомнений относительно функций преобразователя, пожалуйста, свяжитесь со службой поддержки. В силу внесения постоянных улучшений в продукт, настоящий документ может обновляться без уведомлений.

Преобразователи серии SL9 соответствуют требованиям следующих международных стандартов:

- IEC/EN61800-5-1: 2003 Требования к безопасности систем регулируемых электроприводов; \
- IEC/EN61800-3: 2004 Систем регулируемых электроприводов. Часть 3: Электромагнитная совместимость. Требования и методы испытаний.;
- ТР ТС 004/2011 "О безопасности низковольтного оборудования";
- ТР ТС 020/2011 "Электромагнитная совместимость технических средств".

Все устройства прошли процедуру сертификации и/или декларирования СЕ и ЕАС

Редакция 3. Октябрь 2019г.

Оглавление

1.	Требования безопасности	1
	1.1 Информация о безопасности	1
	1.2 Общие меры предосторожности	2
2.	Информация о продукте	5
	2.1 Обозначение моделей	5
	2.2 Заводская этикетка	
	2.3 Линейка инверторов серии SL9	
	2.4 Технические спецификации	
	2.5 Внешний вид и размеры	
	2.6 Опции	
	2.7 Обслуживание преобразователя частоты	12
	2.8 Гарантии	13
	2.9 Подбор оборудования для торможения	13
3.	Установка преобразователя частоты.	16
	3.1 Условия установки	16
	3.2 Место установки	
	3.3 Периферийное оборудование	
	3.4 Указание по подключению силовых периферийных устройств	
	3.5 Выбор силовых периферийных устройств	
	3.6 Установка и удаление панели управления	
	3.7 Схема подключения клемм	22
	3.8 Схемы и описание силовых клемм	22
	3.9 Меры предосторожности при подключении силового контура	23
	3.10 Описание цепи управления и клемм основного контура	25
4.	Управление и мониторинг	29
	4.1 Инструкции к управлению и мониторингу	29
	4.2 Просмотр и изменение функциональных кодов	
	4.3 Контроль параметров состояния	31
	4.6 Настройки пароля	31
	4.7 Автонастройка параметров мотора	31
5.	Описание функциональных кодов	33
	5.1 Группа b0: Базовые функциональные параметры	33
	5.2 Группа b1: Параметры управления пуском/остановкой	40
	5.3 Группа b2: Вспомогательные функции	
	5.4 Группа b3: Входные клеммы	
	5.5 Группа b4: Выходные клеммы	
	5.6 Группа b5: Импульсные/Аналоговые входные клеммы	
	5.7 Группа b6: Импульсные/Аналоговые выходные клеммы	
	5.8 Группа b7: Клеммы виртуального цифрового входа (VDI)/цифрового выхода (VDO)	
	5.9 Группа b8: КоррекцияАI/AO	
	5.10 Группа b9: Клавиатура и Дисплей	
	5.11 Группа bA: Параметры связи	
	Э 17 Группа рр. (ром и защита от неисправности	74

5.13 Группа bС: Параметры обнаружения неисправностей	81
5.14 Группа bd Защита двигателя	83
5.15 Группа СО: Функция ПИД-регулирования процесса	84
5.16 Группа С1: Многофункциональный режим	89
5.17 Группа С2: простой ПЛК	
5.18 Группа С3: Параметры поддержания постоянного адвлени	ия в системе водоснабжения94
5.19 Группа d0: Параметры двигателя 1	94
5.20 Группа d1: параметры векторного управления двигателя 1	98
5.21 Группа d2: Параметры управления двигателем 1 V / F	
5.22 Группа d6: Параметры оптимизации управления	106
5.23 Группа U0: параметры мониторинга	108
5.24 Группа А0: параметры системы	113
5.25 Группа А2: Параметры оптимизации управления 2	
б. ЭМС (электромагнитная совместимость)	117
7. Диагностика и устранение неисправностей	119
Приложение I. Протокол обмена данными Modbus	
Приложение П. Таблица функциональных кодов	136
Гарантийный талон	

1. Требования безопасности

В настоящей инструкции используются следующие значки в зависимости от степени опасности:

У Опасность Означает, что несоблюдение требований может вызвать вред здоровью или даже смерть.

<u>!</u>\Внимание

Означает, что несоблюдение требований может вызвать вред здоровью или имуществу.

Внимательно прочтите настоящее руководство. Установка, проверка и обслуживание прибора могут выполняться в соответствии с требованиями настоящей главы. Производитель не несет ответственности за любой вред, возникший по причине невыполнения указанных требований.

1.1 Информация о безопасности

1.1.1 До установки

- Не используйте прибор в случае его повреждения или отсутствия его составных частей. Несоблюдение требования может нанести вред здоровью.
- Используйте приборы с классом изоляции не ниже В. Несоблюдение требования может нанести вред здоровью.

1.1.2 В процессе установки

• Установка инвертора должна выполняться на негорючую поверхность, такую как металл, и вдали от легко воспламеняемых материалов. Несоблюдение требования может привести к пожару.

- При установке нескольких преобразователей в одной оболочке обеспечьте условия для их нормального охлаждения.
- Не бросайте и не оставляйте внутри инвертора металлические предметы. Невыполнение требования может вывести инвертор из строя.

1.1.3 Подключение

- Подключение должно выполняться квалифицированным персоналом в соответствии с требованиями, изложенными в настоящей инструкции. Несоблюдение требования может привести к непредсказуемым последствиям.
- Для защиты источника энергии должен применяться автоматический выключатель соответствующего номинала. Невыполнение требования может привести к пожару.
- Перед выполнением работ с проводами убедитесь, что они не находятся под напряжением. Невыполнение требования может привести к поражению электрическим током.
- Преобразователь частоты должен быть заземлен в соответствии с требованиями. Невыполнение требования может привести к поражению электрическим током.

- Никогда не подключайте источник электроэнергии к выходным клеммам преобразователя (U, V, W). Несоблюдение требования может вывести прибор из строя.
- Убедитесь, что все подключаемые кабели соответствуют требованиям электромагнитной совместимости. Используйте провода соответствующего сечения. Несоблюдение требования может привести к несчастному случаю.
- Никогда не подключайте тормозной резистор между клеммами шины постоянного тока (P+) и (P-). Несоблюдение требования может привести к пожару.

1.1.4 До подачи питания

• Проверьте выполнение следующих условий:

Напряжение питающей сети соответствует номинальному напряжению частотного преобразователя.

Входные клеммы (R, S, T) и выходные клеммы (U, V, W) правильно подключены.

На выходе отсутствуют короткие замыкания между фазами и на землю.

Винты на клеммах затянуты.

Невыполнение условий может вывести инвертор из строя.

• Для исключения поражения током инвертор нужно закрыть до подачи питания.

- Никогда не выполняйте проверку сопротивления изоляции инвертора. Эта проверка выполнялась на заводе-изготовителе. Повторная проверка может вывести прибор из строя.
- Периферийное оборудование должно быть правильно подключено, согласно данной инструкции. Ошибки в подключении могут привести к несчастному случаю.

1.1.5 После подключения

- Не открывайте преобразователь частоты после подачи питания для исключения поражения электрическим током.
- Не прикасайтесь к инвертору и периферийному оборудованию мокрыми руками.
- Не дотрагивайтесь до клемм инвертора, в том числе клемм управления, для исключения поражения электрическим током.
- Не дотрагивайтесь до клемм U, V, W или клемм двигателя во время прохождения частотным преобразователем автоматической проверки безопасности внешней высоковольтной электрической цепи. Несоблюдение требования может привести к поражению током.

Внимание

- Будьте внимательны при вращении двигателя во время проверки параметров. Несоблюдение требования может привести к несчастному случаю.
- Не изменяйте заводские настройки преобразователя частоты. Несоблюдение требования может привести к повреждению преобразователя частоты.

1.1.6 В процессе работы

- Не приближайтесь к оборудованию, работающему от преобразователя частоты с активной функцией автоперезапуска. Несоблюдение требования может привести к несчастному случаю.
- Не прикасайтесь к вентиляторам и разрядным резисторам для проверки их температуры. Это может привести к несчастному случаю.
- Обнаружение сигнала должно выполняться только квалифицированным персоналом во время работы.

/!Внимание

- Избегайте попадания посторонних предметов внутрь инвертора. Это может вывести его из строя.
- Не включайте/выключайте мотор подачей/отключением контактора на выходе. Это может вывести инвертор из строя.

1.1.7 Обслуживание

- Не ремонтируйте и не обслуживайте инвертор при включенном питании. Это может привести к поражению электрическим током.
- Ремонт и обслуживание инвертора должны выполняться только после того, как погаснут индикаторы заряда. Невыполнение условия может нанести вред здоровью.
- Ремонт и обслуживание инвертора должны выполняться только квалифицированным персоналом. Невыполнение условия может нанести вред здоровью или привести к выходу инвертора из строя.

1.2 Общие меры предосторожности

1.2.1 Измерение сопротивления изоляции мотора

При первом использовании мотора или после длительного простоя необходимо измерить сопротивление его изоляции, чтобы предотвратить повреждение инвертора. Мотор должен быть отключен от инвертора во время проведения испытания. Сопротивление изоляции рекомендуется измерять на напряжении 500В. Значение должно быть не менее $5 \, \mathrm{M}\Omega$.

1.2.2 Тепловая защита мотора

В случае, если номинальная мощность мотора существенно меньше мощности преобразователя частоты, необходимо настроить параметры защиты мотора в преобразователе частоты или установить электротепловое реле в силовой цепи двигателя.

1.2.3 Работа с частотами более 50 Гц

Преобразователь частоты способен выдавать частоту до 300Гц в векторном режиме и до 3000Гц в вольт-частотном режиме. При работе на частотах более 50 ГЦ убедитесь в том, что такие частоты приемлемы для подключаемого мотора.

1.2.4 Механические вибрации

Работа частотного преобразователя на некоторых частотах может вызвать резонансные явления, которые можно исключить, применяя интервалы запрещенных частот в настройках преобразователя.

1.2.5 Нагрев и шум мотора

Поскольку выходная синусоида частотного преобразователя получается методом широтноимпульсной модуляции (ШИМ) и включает в себя гармоники на частотах, это приводит к определенному увеличению нагрева и шума мотора в сравнении с питанием напрямую от сети 50 Гп.

1.2.6 Защита от перенапряжений и конденсаторы на выходе инвертора

Никогда не устанавливайте конденсаторы для повышения коэффициента мощности и приборы для защиты от перенапряжений на выходе преобразователя частоты, поскольку выход преобразователя представляет собой модулированные импульсы, которые могут привести к превышению допустимого тока на выходе или даже к выходу инвертора из строя.

1.2.7 Контактор на входе/выходе инвертора преобразователя частоты

При установке контактора на входе в преобразователь частоты, его нельзя применять для включения/выключения мотора. Интервал между включениями контактора на входе преобразователя частоты должен быть не менее часа. Частое подключение/отключение инвертора к сети приводит к уменьшению ресурса силовых конденсаторов.

При установке контактора на выходе преобразователя частоты запрещается его коммутация в процессе работы, т.к. это может привести к поломке силовых транзисторов.

1.2.8 Повышенное напряжение

Преобразователь частоты нельзя подключать к сети с напряжением выше указанного в спецификации, поскольку это может вывести его из строя. В случае необходимости, применяйте понижающий трансформатор.

1.2.9 Запрет на подключение трехфазных приборов к двум фазам

Никогда не подключайте трехфазный вход инвертора к двум фазам. Это может вывести его из строя.

1.2.10 Подавление помех

Инвертор содержит встроенный фильтр, подавляющий резкие скачки напряжения. В местах с некачественным питанием, пожалуйста, используйте дополнительные фильтры для подавления помех на входе инвертора.

Примечание: Не подключайте фильтры подавления помех к выходу инвертора.

1.2.11 Зависимость мощности от высоты над уровнем моря

В местах с высотой над уровнем моря выше 1000 м охлаждающая способность снижается в связи с разрежением. Это необходимо учитывать при подборе преобразователя частоты. Пожалуйста, обратитесь к местному дистрибьютору.

1.2.12 Специальные применения

Если вы используете инвертор для случаев, не описанных в данной инструкции, пожалуйста, проконсультируйтесь со службой технической поддержки.

1.2.13 Утилизация

Силовые электролитические конденсаторы и плата управления могут взрываться при сжигании и нагреве. В процессе горения пластиковых частей выделяется токсичный газ. Инвертор должен утилизироваться как промышленные отходы.

1.2.14 Применяемые моторы

Преобразователи частоты предназначены для привода асинхронных электродвигателей с короткозамкнутым ротором. При использовании с моторами на постоянных магнитах, обратитесь за консультацией в службу технической поддержки. Обычно вентилятор охлаждения электродвигателя закреплен на роторе двигателя и при снижении скорости его вращения ухудшается охлаждение обмоток. Это обстоятельство нужно учитывать при работе на малых скоростях и при необходимости применять дополнительные способы охлаждения обмоток. Несмотря на то, что основные среднестатистические электрические параметры мотора предварительно внесены в память преобразователя частоты на заводе, для получения лучших результатов рекомендуется провести процедуру автонастройки до начала работы. Преобразователь частоты может перейти в состояние ошибки или даже выйти из строя при наличии короткого замыкания в выходных силовых цепях (в кабеле или в электродвигателе). В связи с этим необходимо выполнять проверку сопротивления изоляции при первом включении и периодически. При проведении проверки, проверяемые элементы должны быть обязательно отключены от преобразователя частоты.

2. Информация о продукте

2.1 Обозначение моделей

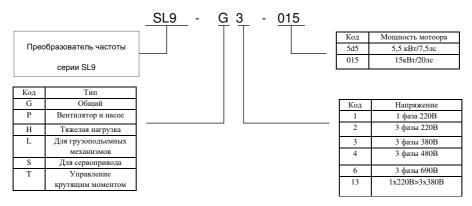


Рис 2-1 Обозначение инверторов

2.2 Заводская этикетка

Рис 2-2 Этикетка

2.3 Линейка инверторов серии SL9

Рис 2-1 Модели и характеристики инверторов SL9

			Входной	Выходной		Тепловые
Модель	Mo	тор	ток (A)	ток (A)	Мощность (кВА)	потери (кВт)
	кВт	Л.с.				
Одно	вазно	е пита	ние 220В	50/60Гц		
SL9-G1-d75	0.75	1.0	8.2	4	1.5	0.030
SL9- G1-1d5	1.5	2.0	14	7	3.0	0.055
SL9- G1-2d2	2.2	3.0	23	9.6	4.0	0.072
Tpex	фазно	е пита	ние 220В,	50/60Гц		
SL9-G2-d75	0.75	1	5	3.8	3	0.030
SL9- G2-1d5	1.5	2	5.8	5.1	4	0.055
SL9- G2-2d2	2.2	3	10.5	9	5.9	0.072
SL9- G2-004	3.7	5	14.6	13	8.9	0.132
SL9- G2-5d5	5.5	7.5	26	25	17	0.214
SL9- G2-7d5	7.5	10	35	32	21	0.288
SL9- G2-011	11	15	46.5	45	30	0.489
SL9- G2-015	15	20	62	60	40	0.608

				Входной	Выходной	Мощность	Тепловые
Mo	Модель			ток	ток	(кВА)	потери
1410	дслв			(A)	(A)	(KD/1)	(кВт)
		кВт	Л.с.				
SL9-	G2-018	18.5	25	76	75	57	0.716
SL9-	G2-022	22	30	92	91	69	0.887
SL9-	G2-030	30	40	113	112	85	1.11
SL9-	G2-037	37	50	157	150	114	1.32
SL9-	G2-045	45	60	180	176	134	1.66
SL9-	G2-055	55	75	214	210	160	1.98
SL9-	G2-075	75	100	307	304	231	2.02
	Tpex	фазно	е пита	ние 380В,	50/60Гц		
SL9- G3-d75		0.75	1	3.4	2.1	1.5	0.027
SL9- G3-1d5	SL9- P3-1d5	1.5	2	5	3.8	3	0.050
SL9- G3-2d2	SL9- P3-2d2	2.2	3	5.8	5.1	4	0.066
SL9- G3-004	SL9- P3-004	3.7	5	10.5	9	5.9	0.120
SL9- G3-5d5	SL9- P3-5d5	5.5	7.5	14.6	13	8.9	0.195
SL9- G3-7d5	SL9- P3-7d5	7.5	10	20.5	17	11	0.262
SL9- G3-011	SL9- P3-011	11	15	26	25	17	0.445
SL9- G3-015	SL9- P3-015	15	20	35	32	21	0.553
SL9- G3-018	SL9- P3-018	18.5	25	38.5	37	24	0.651
SL9- G3-022	SL9- P3-022	22	30	46.5	45	30	0.807
SL9- G3-030	SL9- P3-030	30	40	62	60	40	1.01
SL9- G3-037	SL9- P3-037	37	50	76	75	57	1.20
SL9- G3-045	SL9- P3-045	45	60	92	91	69	1.51
SL9- G3-055	SL9- P3-055	55	75	113	112	85	1.80
SL9- G3-075	SL9- P3-075	75	100	157	150	114	1.84
SL9- G3-090	SL9- P3-090	90	125	180	176	134	2.08
SL9- G3-110	SL9- P3-110	110	150	214	210	160	2.55
SL9- G3-132	SL9- P3-132	132	200	256	253	192	3.06
SL9- G3-160	SL9- P3-160	160	250	307	304	231	3.61
SL9- G3-200	SL9- P3-200	200	300	385	377	250	4.42
SL9- G3-220	SL9- P3-220	220	300	430	426	280	4.87
SL9- G3-250	SL9- P3-250	250	400	468	465	355	5.51
SL9- G3-280	SL9- P3-280	280	370	525	520	396	6.21
SL9- G3-315	SL9- P3-315	315	500	590	585	445	7.03
SL9- G3-355	SL9- P3-355	355	420	665	650	500	7.81
SL9- G3-400	SL9- P3-450	400	530	785	725	565	8.51
SL9- P3-450	SL9- P3-500	450	600	883	820	630	9.23

2.4 Технические спецификации

Таблица 2-2 Технические спецификации SL9

Характеристика		Знач	нение	
		Векторный режим: 0~300 Hz		
	Макс. частота	Вольт-частотный режим: 0~3000 Hz		
	Haavaraa waxaa	0.5–16 kHz (Автонастраивается в зависимости от		
	Несущая частота	нагрузки.)		
		Цифровая установка: 0.0	1 Hz	
	Точность установки частоты	Аналоговая установка: м		
	-	0.025%		
		Векторный без датчика (
	Режимы управления	Вектороный с датчиком ((FVC) (+ плата PG)	
		Вольт-частотный (V/F)		
	Стартовый момент	Тип G: 0.5 Гц/150% (SVC	C); 0 Гц/180% (FVC)	
	-	Тип Р: 0.5 Гц/100%	1, 10,00 (777.70)	
	Диапазон скорости	1:100 (SVC)	1:1000(FVC)	
	Точность скорости	± 0.5% (SVC)	± 0.02% (FVC)	
	Точность управления	± 10% (SVC)	± 5% (FVC)	
Станцартная	моментом	, ,		
Стандартная функция		Тип G: 60с на 150% номи 180% номинального тока		
функции	Перегрузочная способность	Тип Р: 60с на 120% номи		
		150% номинального тока	•	
		Автоматическая поддерж		
	Поддержка момента	Ручная поддержка 0.1%~		
		Линейная V/F зависимос		
		Многоточечная V/F зависимость		
	V/F - кривая	Степенная V/F зависимость (степень 1.2, 1.4, 1.6,		
		1.8, квадратичная)		
	V/F разделение	Два типа: полное и полов	винное	
	•	Линейная рампа		
	Vaunag paaraya/aawagggggg	S-кривая		
	Кривая разгона/замедления	4 набора разгона/замедления с диапазонами		
		0.0s~65000s		
	Торможение постоянным	Частота торможения: 0.0		
	током	Время торможения: 0.0с~36.0с		
		Порог тормозного тока: 0.0%~100.0%		
	Дежурный режим	Дежурная частота: 0.00Гц~50.00 Гц		
	* * **	Дежурное время разгона/останова: 0.00c~6500.0c Может использоваться до 16 скоростей с		
	Встроенный ПЛК,			
Стандартная	Многоскоростной режим	помощью программы простого ПЛК или в режиме управления через клеммы		
функция	Встроенный			
	ПИД-регулятор	Простое управление с об	ратной связью	
	Авторегулировка	Поддерживает постояння	ым выходное напряжение	
	напряжения (АРН)	независимо от флуктуаци		
	Контроль		•	
	перенапряжения/превышения	Автоматическое огранич	-	
	по току	для исключения перегруз	вок	
	no ronj			
Стандартная	F	Автоматическое быстрое	_	
функция	Быстрое ограничение тока	исключения выхода из ст	роя из-за превышения	
		Тока	OTHER PROPERTY OF STREET	
	Ограницение и управление	Автоматическое огранич для исключения перегруз		
	Ограничение и управление моментом	моментом может использ	-	
	MOMONIOM	MOMENTOW MOZET MONOJIBS	обыться в режиме вк.	
		l		

	Характеристика	Значение
		Управление асинхронными и синхронными
	Высокая эффективность	моторами посредством высокоэффективных
		векторных алгоритмов
	Нечувствительность к	Инерция нагрузки предотвращает просадку напряжения при кратковременном пропадании
	кратковременным	питания, таким образом инвертор продолжает
	прерываниям питания	работу
	Настраиваемая токовая защита	Для обеспечения надежной защиты двигателя
		Пять групп виртуальных входов/выходов
	Виртуальные клеммы	позволяют реализовать простые логические
Специальная	Tořison	Зависимости
функция	Таймер	Диапазон таймера: 0.0~6500.0 минут Могут использоваться две группы параметров
	Многомоторная настройка	мотора для устранения перенастройки
	П б	Поддержка нескольких протоколов: Modbus-RTU,
	Поддержка обмена данными	PROFIBUS-DP, CANlink and CANopen.
	Защита мотора от перегрева	Опциональный вход для термометра (РТ100,
	защита мотора от перегрева	PT1000)
	Несколько типов	Поддержка энкодеров различных типов:
	подключаемых энкодеров	дифференциальных, с открытым коллектором, ресолверного типа, типа UVW, типа SIN/COS
	Улучшенное программное	Поддержка рабочих параметров инвертора и
		функции виртуального осциллографа с
	обеспечение	возможностью мониторинга статуса
		С панели
	**	Склемм
	Управление	Через цифровой порт
		Смешанный тип с переключением между каналами
		Источники установки: цифровая установка,
Работа		аналоговая установка напряжением, током,
	Установка частоты	импульсным сигналом, через цифровой порт.
		Смешанный тип с переключением между
	V	каналами.
	Установка вспомогательной частоты	10 возможных способов, позволяющих выполнять точную настройку.
	частоты	Стандарт:
		• 6 цифровых входов (DI), один из них поддерживает
		импульсный сигнал с частотой до 100 кГц
	Входные клеммы	• 2 аналоговых входа (AI), оба поддерживают
		сигналы 0 В~10 В и 0 мА~20мА Существует возможность расширения:
		Большое количество цифровых входов (DI)
		 ■ 1 АІ вход, который поддерживает сигнал 0В~10 В
		Стандарт:
Работа		• 1 высокочастотный импульсный выход с открытым
		коллектором с частотой 0–100 кГц с сигналом прямоугольной формы
		прямоугольной формы ■ 1 транзисторный выход (DO)
	Выходные клеммы	• 2 релейных выхода
	•	• 2 аналоговых выхода (АО) с поддержкой сигналов
		0мА~20мА и 0В~10В
		Существует возможность расширения: ■ Большое количество цифровых выходов (DI)
		Большое количество цифровых выходов (D1) Большое количество релейных выходов
Дисплей и	LED дисплей	Отображение параметров
панель	LCD дисплей	Опциональное исполнение с поддержкой
управления	ьсь дисплеи	английского языка

	Характеристика	Значение
	Копирование параметров	Опциональная LCD панель управления может
	Копирование параметров	копировать параметры преобразователя
		Возможность частичной или полной блокировки
		параметров для редактирования с целью
		исключения ошибок в управлении
		Диагностика короткого замыкания при запуске,
	Режим защиты	защита от потери входной/выходной фазы,
	тежим защиты	перенапряжения, превышения по току, просадки
		напряжения, перегрева, перегрузки и т.д.
		В помещении, без пыли, без прямых солнечных
	Место размещения	лучей, агрессивных газов, дыма, пара, соли,
		испарений и воды
Условия	Высота	Ниже 1000м над уровнем моря
	Тампаратура эксплуатанун	-10°C~ +40°C (в диапазоне от 40°C до 50°C
эксплуатации	Температура эксплуатации	мощность снижается)
	Влажность	Не выше 95% без конденсата
	Вибрация	До 5.9 м/с2 (0.6 g)
	Температура хранения	-20°C ~ +60°C

2.5 Внешний вид и размеры

2.5.1 Внешний вид

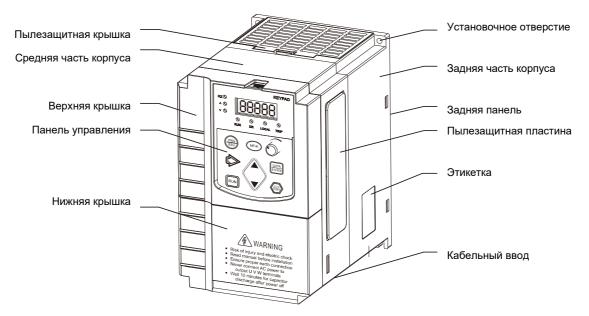
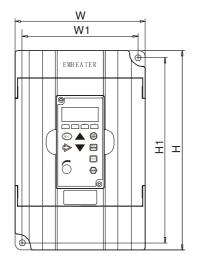
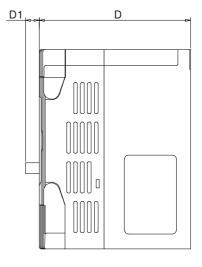




Рис 2-3 Внешний вид (С потенциометром)



Рис 2-4 Внешний вид инвертора SL9 в пластиковом корпусе

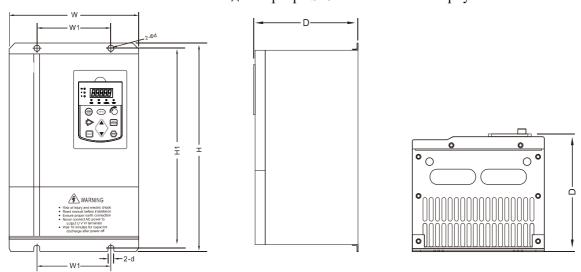


Рис 2-5 Внешний вид инвертора SL9 в металлическом корпусе

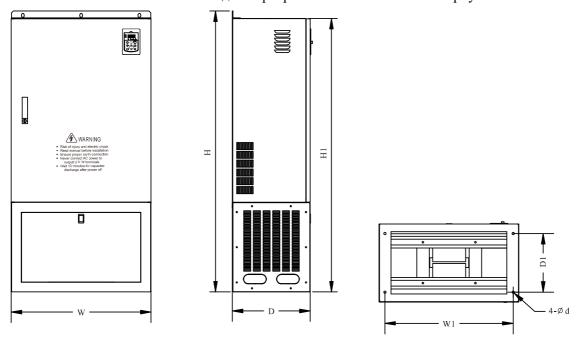


Рис 2-6 Внешний вид инвертора SL9 шкафного исполнения

Типы оболочек инверторов SL9 перечислены в таблице ниже.

Питание	1 Ф 220 B	3 ф 220 В		3 ф 3	880 B
Мощность	0.4кВт∼2.2кВт	0.4кВт \sim 11кВт	15кВт \sim 75кВт	0.75кВт \sim 22кВт	30 кВт \sim 400кВт
Корпус	Пластик	Пластик	Металл	Пластик	Металл

2.5.2 Габаритные и соединительные размеры инверторов SL9

2.5.2 Габаритные и соеди							-)
Модель	W	баритныс W1	и присо Н	единителі Н1	ьные разм D	теры (мм D1	Ød
	•		 зные 220		D	DI	χοu
SL9-G1-d75		Однофа	ЗПЫС 220	<u> </u>			
SL9-G1-1d5	100	89	151	140	116.5		Ø4
SL9-G1-2d2	118	106.5	185	175.5	157		Ø 4.5
5L7-G1-2u2	110		зные 220		137		W 4.3
SL9-G2-d75		Трехфа	3HBIC 220.	<u> </u>			
SL9-G2-1d5	100	89	151	140	116.5		Ø4
SL9-G2-2d2	118	106.5	185	175.5	157		Ø4.5
SL9-G2-004	110	100.3	103	173.3	137		97. 3
SL9-G2-5d5	160	148	247	235	177		Ø 5.5
SL9-G2-7d5							
SL9-G2-011	220	205	320	305	198		Ø 5.5
SL9-G2-015							
SL9-G2-018	300	220	540	500	240		Ø 7
SL9-G2-022							
SL9-G2-030	340	260	580	540	270		Ø 10
SL9-G2-037							
SL9-G2-045	410	260	610	575	280		Ø 12
SL9-G2-055	460	320	710	690	335		Ø 12
SL9-G2-075	535	360	885	830	370		Ø 12
	1		зные 380	l .			/
SL9-G3-d75/P3-1d5		Трехфа	JIDIC 500				
SL9-G3-1d5/P3-2d2	100	89	151	140	116.5		Ø4
SL9-G3-2d2/P3-004		07	101	1.0			, ,
SL9-G3-004/P3-5d5							
SL9-G3-5d5/P3-7d5	118	106.5	185	175.5	157		Ø4.5
SL9-G3-7d5/P3-011							
SL9-G3-011/P3-015	160	148	247	235	177		Ø5.5
SL9-G3-015/P3-018							
SL9-G3-018/P3-022	220	205	320	305	198		Ø5.5
SL9-G3-022/P3-030		200	320				20.0
SL9-G3-030/P3-037							
SL9-G3-037/P3-045	300	220	540	500	240		Ø 7
SL9-G3-045/P3-055							
SL9-G3-055/P3-075	340	260	580	540	270		Ø 10
SL9-G3-075/P3-090							
SL9-G3-090/P3-110	410	260	610	575	280		Ø 12
SL9-G3-110/P3-132							
SL9-G3-132/P3-160	460	320	710	690	335		Ø 12
SL9-G3-160/P3-185							
SL9-G3-185/P3-200	535	360	885	830	370		Ø 12
SL9-G3-200/P3-220	1						
SL9-G3-220/P3-250	1						
SL9-G3-250/P3-280	650	360	1040	985	5 415		Ø 12
SL9-G3-280/P3-315	1						
SL9-G3-315/P3-355	†						
SL9-G3-355/P3-400	815	600	1350	1250	445		Ø 12
SL9-G3-400/P3-450	1						,

Marary	Габаритные и присоединительные размеры (мм)						
Модель	W	W1	Н	H1	D	D1	Ød
SL9-G3-450/P3-500							

2.5.3 Внешний вид и размеры панели управления

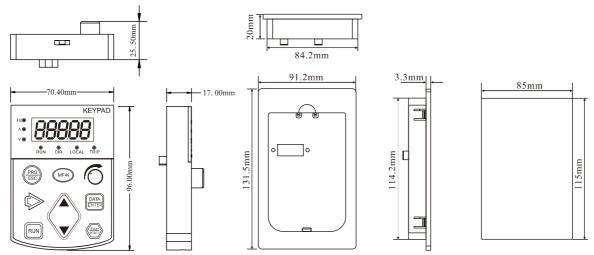


Рис 2-7 Внешний вид и размеры панели управления

2.6 Опции

Обратите внимание на опции, которые могут потребоваться при заказе

Таблица 2-4 Опции преобразователей частоты SL9

Наим.	Применимость				
Внешний	10 D (20 D)				
тормозной модуль	Используется с инверторами от 30кВт (включая 30кВт)				
Рекуператор	Рекуператор позволяет передавать энергию при торможении				
энергии	мотора обратно в сеть				
Выпрямительный	Применим в случае использования общей шины DC для				
блок	нескольких инверторов с целью экономии электроэнергии				

2.7 Обслуживание преобразователя частоты

2.7.1 Ежедневное обслуживание

Воздействие таких факторов как температура, влажность, пыль и вибрация может привести к постепенному ухудшению теплоотвода, старению компонентов и сокращению ресурса инвертора. В связи с этим необходимо регулярно обслуживать инвертор.

Ежедневно необходимо проверять следующее:

- 1. Необычный звук в процессе работы мотора;
- 2. Вибрация мотора;
- 3. Изменение окружающих условий в месте установки инвертора;
- 4. Нормальная работа вентилятора и чистота радиатора;
- 5. Отсутствие перегрева инвертора;
- 6. Чистота частотного преобразователя;
- 7. Отсутствие грязи, влаги и пыли (особенно металлической) в месте установки инвертора;
- 8. Тщательно очищайте вентилятор инвертора от масла и грязи.

2.7.2 Периодические проверки

Периодически выполняйте следующие проверки:

- 1. Проверяйте и регулярно очищайте воздушный тракт системы охлаждения;
- 2. Проверяйте затяжку винтов;
- 3. Проверяйте инвертор на предмет коррозии;

4. Проверяйте клеммы на отсутствие искрения и пригаров;

Примечание: При измерении сопротивления изоляции мотора мегомметром всегда отключайте кабели от преобразователя частоты (используйте мегомметр 500В). Не используйте измеритель сопротивления изоляции, чтобы проверить схему управления. Не проводите высоковольтный тест (он был проведен на заводе производителя).

2.7.3 Замена изношенных частей

К частям преобразователя частоты, подверженным износу, относятся вентилятор и электролитические конденсаторы. Их ресурс очень сильно зависит от условий эксплуатации и обслуживания. Примерный ресурс:

Наименование	Pecypc
Вентилятор	От 3 до 4 лет
Электролитический	От 5 до 6 лет
конденсатор	ОГЭДООЛЕГ

Пользователь может сам определить необходимость замены, исходя из отработанного времени

- 1. Возможные причины повреждения вентилятора: износ подшипников из-за отсутствия смазки, попадания пыли и повреждение лопастей. Признаками неисправности являются посторонний звук, вибрация и нагрев.
- 2. Возможные причины повреждения электролитических конденсаторов: низкое качество электроэнергии, температура, частые циклы заряда/разряда. Признаками неисправности являются: вытекание электролита, выпирание сбросного клапана, изменение емкости и сопротивления.

2.7.4 Хранение преобразователей частоты

После покупки преобразователя частоты необходимо выполнять следующие условия хранения:

- 1. Храните преобразователь частоты в заводской упаковке;
- 2. Длительное хранение может привести к деградации электролитический конденсаторов. Для исключения деградации необходимо по крайней мере один раз в два года подключать питание к преобразователю и держать его под напряжением не менее 5 часов. Входное напряжение в этом случае необходимо увеличивать плавно, с использованием регулятора напряжения.

2.8 Гарантии

- 1. Гарантии относятся только к преобразователю частоты
- 2. При нормальной эксплуатации гарантийный срок на заводские дефекты составляет 12 месяцев. Срок гарантии определяется по гарантийному талону и серийному номеру инвертора. По истечении 12 месяцев ремонт выполняется на платной основе.
- 3. Случаи, которые не являются гарантийными:
 - а) Неисправность наступила из-за нарушения требований инструкции по эксплуатации;
 - b) Неисправность наступила из-за воздействия огня, воды или ненормального напряжения;
 - с) Неисправность возникла из-за применения инвертора не по назначению
- 4. Размер платы за не гарантийный ремонт определяется по прейскурантам поставщика, если иное не закреплено в договоре поставки.

2.9 Подбор оборудования для торможения

В таблице 2-5 приведены рекомендуемые номиналы тормозных резисторов. Пользователь может выбирать сопротивление и мощность резисторов, исходя из ситуации, но сопротивление и мощность резистора должны быть не меньше приведенных значений. Мощность и сопротивление резистора определяются динамикой замедления и инерцией системы. При

увеличении инерции, сокращении времени торможения и увеличении частоты остановок необходимо выбирать резистор с большей мощностью, но минимальным допустимым сопротивлением.

2.9.1 Подбор тормозного сопротивления

При торможении почти вся энергия мотора передается на тормозной резистор.

Справедливо выражение: U * U/R = Pb, где

U - Напряжение торможения (определяется номинальным напряжением и для сети380B составляет 700B)

R – Тормозное сопротивление

Pb – Тормозная мощность

2.9.2 Подбор тормозной мощности

В теории мощность резистора равна мощности торможения, но в реальности необходимо учесть, что мощность резистора снизится до 70%:

0.7*Pr=Pb*D, где

Pr---- Мощность резистора

D---- Тормозной коэффициент (учитывается для всего процесса)

Лифт---- 20%~30%

Охладители и нагреватели---- 20%~30%

Центробежные машины---- 50%~60%

Резко затормаживаемая нагрузка---- 5%

Общий тип----10%

Таблица 2-5 SL9 Выбор компонентов для торможения

Модель	Рекомендуемая мощность резистора	Рекомендуемое сопротивление	Тормозной модуль	Примечание		
	Однофазные 220В					
SL9-G1-d75	80Вт	≥ 150Ω				
SL9-G1-1d5	100Вт	$\geq 100\Omega$	Встроен	-		
SL9-G1-2d2	100Вт	$\geq 70\Omega$				
	Тр	ехфазные 220В				
SL9-G2-d75	150Вт	≥110Ω				
SL9-G2-1d5	250Вт	$\geq 100\Omega$		-		
SL9-G2-2d2	300Вт	≥ 65Ω	Встроен			
SL9-G2-004	400BT	≥ 45Ω				
SL9-G2-5d5	800BT	≥ 22Ω				
SL9-G2-7d5	1000Вт	≥16Ω				
SL9-G2-011	1500Вт	≥11Ω				
SL9-G2-015	2500Вт	$\geq 8\Omega$				
SL9-G2-018	3.7 кВт	$\geq 8.0\Omega$				
SL9-G2-022	4.5 кВт	$\geq 8\Omega$				
SL9-G2-030	5.5 кВт	$\geq 4\Omega$	Внешний	-		
SL9-G2-037	7.5 кВт	$\geq 4\Omega$				
SL9-G2-045	4.5 кВт×2	$\geq 4\Omega \times 2$				
SL9-G2-055	5.5 кВт×2	$\geq 4\Omega \times 2$				
SL9-G2-075	16Вт	≥1.2Ω				

Модель	Рекомендуемая мощность резистора	Рекомендуемое сопротивление	Тормозной модуль	Примечание
	Тр			
SL9-G3-d75/P3-1d5	150Вт	≥ 300Ω		
SL9-G3-1d5/P3-2d2	150Вт	≥ 220Ω		
SL9-G3-2d2/P3-004	250Вт	$\geq 200\Omega$		
SL9-G3-004/P3-5d5	300Вт	≥ 130Ω		
SL9-G3-5d5/P3-7d5	400Вт	$\geq 90\Omega$	D	
SL9-G3-7d5/P3-011	500Вт	≥ 65Ω	Встроен	-
SL9-G3-011/P3-015	800Вт	≥ 43Ω		
SL9-G3-015/P3-018	1000Вт	≥ 32Ω		
SL9-G3-018/P3-022	1300Вт	≥ 25Ω		
SL9-G3-022/P3-030	1500Вт	\geq 22 Ω		
SL9-G3-030/P3-037	2500Вт	≥16Ω		
SL9-G3-037/P3-045	3.7 кВт	$\geq 16.0\Omega$		
SL9-G3-045/P3-055	4.5 кВт	≥16Ω	Опция	
SL9-G3-055/P3-075	5.5 кВт	$\geq 8\Omega$	Опция	-
SL9-G3-075/P3-090	7.5 кВт	$\geq 8\Omega$		
SL9-G3-090/P3-110	4.5 кВт×2	$\geq 8\Omega \times 2$		
SL9-G3-110/P3-132	5.5 кВт×2	$\geq 8\Omega \times 2$		
SL9-G3-132/P3-160	6.5 кВтх2	$\geq 8\Omega \times 2$		
SL9-G3-160/P3-200	16 кВт	\geq 2.5 Ω		
SL9-G3-200/P3-220	20 кВт	\geq 2.5 Ω		
SL9-G3-220/P3-250	22 кВт	≥ 2.5Ω	Внешний	
SL9-G3-250/P3-280	12.5 кВт×2	≥ 2.5Ω×2	Бисшний	-
SL9-G3-280/P3-315	14 кВт×2	≥ 2.5Ω×2		
SL9-G3-315/P3-355	16 кВт×2	≥ 2.5Ω×2		
SL9-G3-355/P3-400	17 кВтх2	≥ 2.5Ω×2		
SL9-G3-400/P3-450	14кВт×3	$\geq 2.5\Omega \times 3$		

2.9.3 Подключение тормозного модуля

Подключение тормозного модуля и резистора к инвертору SL9:

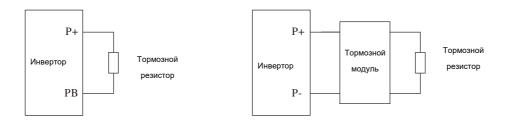


Рис. 2-8 Подключение тормозного модуля и резистора

3. Установка преобразователя частоты

3.1 Условия установки

- 1. Хорошо проветриваемое помещение
- 2. Окружающая температура -10°C~40°C. При температуре от +40°C до +50°C необходимо обеспечить принудительную вентиляцию инвертора.
- 3. Избегайте места с высокой температурой и высокой влажностью; влажность должна быть не выше 90%.
- 4. Вне досягаемости прямых солнечных лучей.
- 5. Влади от легко воспламеняемых, горючих и агрессивных жидкостей и газов.
- 6. Отсутствие пыли и металлической стружки.
- 7. Отсутствие вибрации. Особенно критична близость прессов и т.п. оборудования. Ускорение при вибрации должно быть не выше 0.6G.
- 8. Вдали от источников электромагнитных помех.

3.2 Место установки

Для увеличения ресурса инвертора необходимо обеспечить правильную установку:

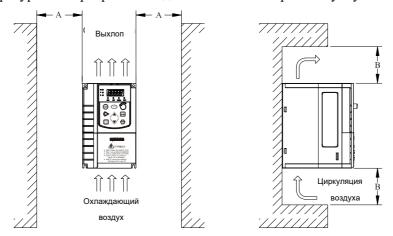


Рис. 3-1 Обеспечение вентиляции на месте установки

•				
Mayyyaamy	Размер			
Мощность	A	В		
≤7.5кВт	≥ 20мм	≥ 100мм		
11kW – 30кВт	≥ 50мм	≥ 200мм		
≥ 37кBт	≥ 50мм	≥ 300мм		

Устанавливайте преобразователь частоты вертикально, чтобы тепло шло вверх. Следите за направлением преобразователя частоты, чтобы избежать инверсии.

Если Вы устанавливаете несколько преобразователей частоты, ставьте их рядом, а не друг над другом.

3.3 Периферийное оборудование



Рис. 3-2 Периферийное оборудование

3.4 Указание по подключению силовых периферийных устройств

Таблица 3-1 Инструкция по использованию основных периферийных устройств

Название	Место	Описание функций
частей	установки	~
Автоматически й выключатель	На входе в преобразователь частоты	Мощность автоматического выключателя должна быть в 1,5-2 раза выше номинального тока инвертора. Время защиты автоматического выключателя должно учитывать все временные особенности защиты от перегрузки инвертора.
Устройство защитного отключения (УЗО)	На входе в преобразователь частоты	Поскольку выход инвертора представляет собой высокочастотный импульсный выход, через него будет протекать ток высокой частоты. При установке должен использоваться специальный автоматический выключатель утечки на вводе в преобразователь частоты. Рекомендуется использовать автоматический выключатель типа В, а значение тока утечки установить 300 мА.
Контактор	Между автоматическим выключателем и входом в частотный преобразователь	Частое включение и з выключение может привести к сбоям инвертора, поэтому максимальная частота включения и выключения контактора не должна превышать 10 раз в минуту при использовании тормозного резистора.
Входной реактор (дроссель) переменного тока или ректор постоянного тока	На входе преобразователя частоты	Применяется, если мощность источника питания инвертора больше 600кВА или в 10 раз больше мощности инвертора. Если в системе используется компенсатор реактивной мощности с каскадным управлением или нагрузка с полупроводниковым управлением, будут иметь место высокие пиковые значения токов, протекающих во входную силовую цепь инвертора, что может привести к повреждению выпрямителя. В случае если асимметрия напряжения трехфазного источника питания инвертора превышает 3%, выпрямитель также может быть поврежден. Требуется, чтобы коэффициент мощности на входе в инвертор был выше 90%. При возникновении вышеперечисленных ситуаций установите реактор переменного тока на входе инвертора или подключите реактор постоянного тока к соответствующим клеммам.
Входной радиочастотны й фильтр	На входе в преобразователь частоты	Применяется чтобы сократить уровень радиочастотных шумов, попадающих в инвертор из сети и в сеть из инвертора.
Электротеплов ое реле	На выходе из преобразователя частоты	Несмотря на то, что инвертор имеет функцию защиты от перегрузки двигателя, когда один инвертор управляет двумя и более двигателями или многополюсными двигателями, чтобы предотвратить перегрев двигателя, электротепловое реле должно быть установлено между инвертором и каждым двигателем.
Выходной фильтр	На выходе частотного преобразователя	Применяется для снижения уровня излучаемых шумов на выходе частотного преобразователя.
Выходной реактор (дроссель)	Между выходном частотного	Когда кабель, соединяющий инвертор и мотор длиннее 100 метров, рекомендуется установить выходной реактор переменного тока для подавления высокочастотных

переменного	преобразователя	колебаний, чтобы избежать повреждения изоляции
тока	и двигателем,	двигателя, большой утечки тока и частого срабатывания
	рядом с	защит инвертора.
	преобразователе	
	м частоты	

3.5 Выбор силовых периферийных устройств

Таблица 3-2 Схема выбора периферийных устройств основной цепи (рекомендуется)

Таблица 3-2 Схема выбора периферийных устройств основной цепи (рекомендуется)						
Модель преобразователя частоты	Автоматичес кий выключатель (А)	Контакто р (А)	Силовой кабель на входе (мм²)	Силовой кабель на выходе (мм²)	Кабель цепи управления (мм²)	
		Однофазны	e 220B			
SL9-G1-d75	16	10	2.5	2.5	1.0	
SL9-G1-1d5	20	16	4.0	2.5	1.0	
SL9-G1-2d2	32	20	6.0	4.0	1.0	
		Трехфазны	e 220B			
SL9-G2-d75	16	10	2.5	2.5	1.0	
SL9- G2-1d5	16	10	2.5	2.5	1.0	
SL9- G2-2d2	25	16	4.0	4.0	1.0	
SL9- G2-004	32	25	4.0	4.0	1.0	
SL9- G2-5d5	63	40	4.0	4.0	1.0	
SL9- G2-7d5	63	40	6.0	6.0	1.0	
SL9- G2-011	100	63	10	10	1.0	
SL9- G2-015	125	100	16	10	1.0	
SL9- G2-018	160	100	16	16	1.0	
SL9- G2-022	200	125	25	25	1.0	
SL9- G2-030	200	125	35	25	1.0	
SL9- G2-037	250	160	50	35	1.0	
SL9- G2-045	250	160	70	35	1.0	
SL9- G2-055	350	350	120	120	1.0	
SL9- G2-075	500	400	185	185	1.0	
		Трехфазны				
SL9- G3-d75/P3-1d5	10	10	2.5	2.5	1.0	
SL9- G3-1d5/P3-2d2	16	10	2.5	2.5	1.0	
SL9- G3-2d2/P3-004	16	10	2.5	2.5	1.0	
SL9- G3-004/P3-5d5	25	16	4.0	4.0	1.0	
SL9- G3-5d5/P3-7d5	32	25	4.0	4.0	1.0	
SL9- G3-7d5/P3-011	40	32	4.0	4.0	1.0	
SL9- G3-011/P3-015	63	40	4.0	4.0	1.0	
SL9- G3-015/P3-018	63	40	6.0	6.0	1.0	
SL9- G3-018/P3-022	100	63	6	6	1.0	
SL9- G3-022/P3-030	100	63	10	10	1.0	
SL9- G3-030/P3-037	125	100	16	10	1.0	
SL9- G3-037/P3-045	160	100	16	16	1.0	

Модель преобразователя частоты	Автоматичес кий выключатель (А)	Контакто р (A)	Силовой кабель на входе (мм ²)	Силовой кабель на выходе (мм²)	Кабель цепи управления (мм²)
SL9- G3-045/P3-055	200	125	25	25	1.0
SL9- G3-055/P3-075	250	125	35	25	1.0
SL9- G3-075/P3-090	250	160	50	35	1.0
SL9- G3-090/P3-110	350	160	70	35	1.0
SL9- G3-110/P3-132	350	350	120	120	1.0
SL9- G3-132/P3-160	400	400	150	150	1.0
SL9- G3-160/P3-200	500	400	185	185	1.0
SL9- G3-200/P3-220	630	600	150*2	150*2	1.0
SL9- G3-220/P3-250	630	600	150*2	150*2	1.0
SL9- G3-250/P3-280	800	600	185*2	185*2	1.0
SL9- G3-280/P3-315	800	800	185*2	185*2	1.0
SL9- G3-315/P3-355	1000	800	150*3	150*3	1.0
SL9- G3-355/P3-400	1000	800	150*4	150*4	1.0
SL9- G3-400/P3-450	1200	1000	150*4	150*4	1.0
SL9- G3-450/P3-500	1200	1200	150*4	150*4	1.0

3.6 Установка и удаление панели управления

3.6.1 Установка и удаление панели управления

Панель управления частотного преобразователя SL9 является съемной и соединяется с инвертором посредством разъема. Если Вам необходимо снять ее при использовании или техническом обслуживании, убедитесь, что действуете аккуратно, так как можно легко повредить разъем на панели управления.

Удаление и установка панели управления (клавиатуры): Рис. 3-3 и Рис. 3-4:

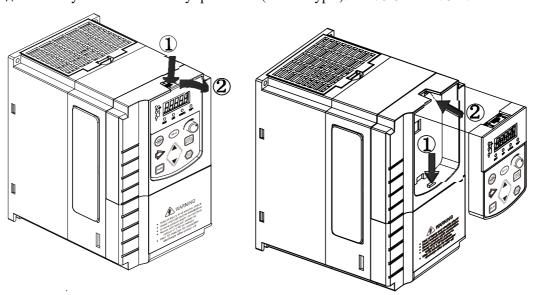


Рис. 3-3Удаление панели управления (клавиатуры) Рис. 3-4Установка панели управления (клавиатуры)

3.6.2 Установка и удаление частотного преобразователя

Преобразователи частоты SL9 мощностью менее 18,5кВт (380В) изготавливаются в пластиковом корпусе. Снятие и установка верхней крышки показаны на рис. 3-5.

Рис. 3-5. Используйте инструмент, чтобы нажимать крючки на обеих сторонах нижней крышки:

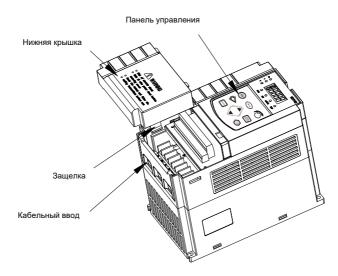


Рис. 3-5 Снятие крышки пластикового корпуса

Преобразователи частоты SL9 мощностью более 22 кВт (380в) изготавливаются в металлическом корпусе. Снятие и установка нижней крышки показаны на рис. 3-6. Удалите барашковые винты и снимите крышку.

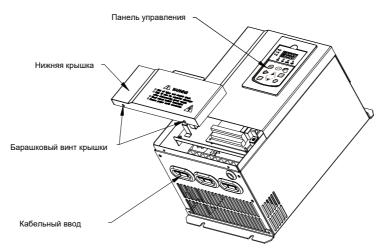
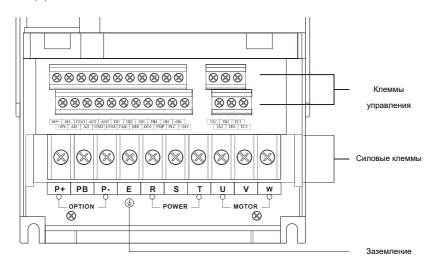
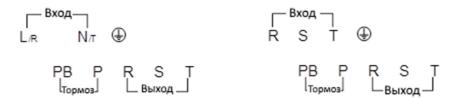


Рис. 3-6 SL9 в металлическом корпусе

3.7 Схема подключения клемм




Рис. 3-7 Расположение клемм в SL9

3.8 Схемы и описание силовых клемм

3.8.1 Функции и описание силовых клемм

Однофазные 220B: SL9-G2-d75~SL9-G2-1d5

SL9-G1-d75~SL9-G1-2d2 Трехфазные 380В: SL9-G3-d75/P31d5~SL9-G3-2d2/P3-004

Трехфазные 220B: SL9-G2-2d2...SL9-G2-045

Трехфазные 380B: SL9-G3-004/P3-5d5...SL9-G3-090/P3-110

Трехфазные 220В: SL9-G2-055...SL9-G2-075

Трехфазные 380B: SL9-G3-110/P3-132...SL9-G3-0450/P3-500

Обозначение	Описание функции				
клеммы	Описание функции				
L1、L2	Входные клеммы однофазного питания переменного тока				
R, S, T	Входные клеммы трехфазного питания переменного тока				
P+ , P-	Клеммы звена постоянного тока				
P+, PB	Клеммы подключения тормозного резистора				
U, V, W	Выходные силовые клеммы				
⊕/E	Клемма заземления				

Примечание: Инвертор со стандартным встроенным силовым блоком может одновременно выполнять функцию торможения и дросселирования постоянного тока. Если Вам требуется внешний реактор постоянного тока и функция торможения, обратитесь к производителю.

3.9 Меры предосторожности при подключении силового контура

3.9.1 Подключение источников питания

- Запрещено подключать питающий кабель к выходному разъему инвертора, в противном случае внутренние компоненты инвертора будут повреждены.
- Чтобы обеспечить входную токовую защиту и обслуживание после выключения, инвертор должен подключаться к источнику питания через автоматический выключатель или УЗО и контактор.
- Убедитесь, что фазность питания и номинальное напряжение соответствуют характеристикам заводской таблички, иначе инвертор может быть поврежден.

3.9.2 Подключение моторов

- Запрещается замыкание или заземление силовых выходов инвертора. В противном случае внутренние компоненты преобразователя будут повреждены.
- Избегайте короткого замыкания выходных кабелей или корпуса инвертора. В противном случае существует опасность поражения электрическим током.
- Запрещается подключать выход инвертора к конденсатору или фильтру LC/RC с фазным проводом. В противном случае внутренние компоненты инвертора могут быть повреждены.
- Когда контактор установлен между инвертором и двигателем, запрещается включать и выключать контактор во время работы инвертора, иначе в инвертор будет подаваться большой ток, который может вывести его из строя.
- Длина кабеля между преобразователем и двигателем. Если кабель между инвертором и двигателем слишком длинный, токи утечки высших гармоник будет вызывать неблагоприятные воздействия на инвертор и периферийные устройства. Рекомендуется при длине кабеля более 100м установить выходной реактор переменного тока. Обратитесь к следующей таблице для настройки несущей частоты.

Длина кабеля между инвертором и двигателем	Несущая частота (d6-00)
Менее 50 м	Менее 15кГц
Менее 100 м	Менее 10кГц
Более 100 м	Менее 5кГц

3.9.3 Заземление

- Инвертор будет выдавать ток утечки. Чем выше несущая частота, тем больше будет ток утечки. Ток утечки инверторной системы составляет более 3,5 мA, а конкретное значение тока утечки определяется условиями использования. Для обеспечения безопасности инвертор и двигатель должны быть заземлены.
- Сопротивление заземления должно быть менее 10 Ом. Для определения диаметра заземляющего проводника обратитесь в местным нормам.
- Не используйте заземляющий провод со сварочным аппаратом и другим силовым оборудованием.
- При использовании более 2 инверторов избегайте формирования петли.

Рис. 3-8 Схема подключения заземления

3.9.4 Подавление радиошумов и помех в кабелях

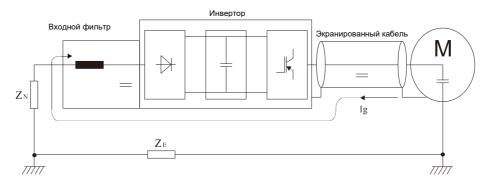


Рис. 3-9 Радиопомехи и помехи по проводам

- При установке входного радиочастотного фильтра кабель, соединяющий фильтр с инвертором, должен быть как можно короче.
- Корпус фильтра и монтажный шкаф должны быть надежно заземлены на большой площади, чтобы уменьшить звуковое сопротивление обратного потока шумового тока lg.
- Провод, соединяющий преобразователь и двигатель, должен быть как можно короче. Кабель двигателя представляет собой четырехпроводной кабель, имеющий заземляющий конец со стороны инвертора и соединенный с корпусом двигателя с другой стороны. Кабель двигателя должен быть помещен в металлическую трубу.
- Входной силовой кабель и выходной провод двигателя должны быть расположены настолько далеко друг от друга, насколько возможно.
- Оборудование и сигнальные кабели должны быть расположены далеко от преобразователя по причине уязвимости.
- Ключевые сигнальные кабели должны соединяться с экранированным кабелем. Предполагается, что защитный слой должен быть заземлен методом заземления на 360 градусов и иметь рукава из металлических труб. Сигнальные кабели должны находиться далеко от входного провода инвертора и выходного провода двигателя. Если сигнальный кабель должен пересекать входной провод и выходной провод двигателя, они должны быть расположены в форме прямоугольника.
- При дистанционной настройке частоты для аналоговых сигналов напряжения и тока используется экранированный кабель. Защитный слой должен быть подключен к заземляющей клемме РЕ инвертора, а сигнальный кабель должен быть не длиннее 50 метров.
- Провода клемм цепи управления RA/RB/RC и другие клеммы управления должны быть разделены.
- Запрещено короткое замыкание защитного слоя и других сигнальных кабелей и оборудования.
- Когда инвертор подключен к оборудованию индуктивной нагрузки (например, электромагнитному контактору, реле и электромагнитному клапану), ограничитель перенапряжения должен быть установлен на нагрузочной катушке, как показано на Рис.3-10

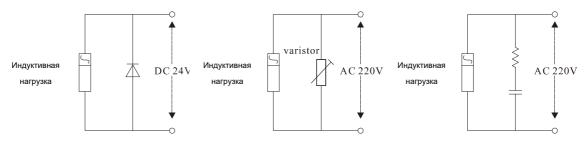


Рис. 3-10 Пример применения индуктивного ограничителя перенапряжения

3.10 Описание цепи управления и клемм основного контура

3.10.1 Цепи управления и клеммы основного контура

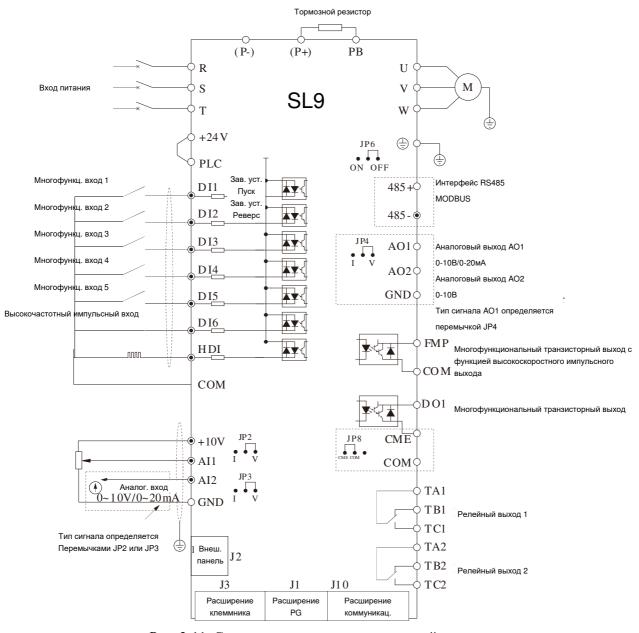


Рис. 3-11 Схема цепи управления и основной цепи

3.10.2 Клеммник цепей управления

Рис. 3-12 Схема клемм цепи управления SL9

3.10.3 Описание клемм цепей управления

Таблица 3-4 Описание клемм цепей управления

Тип	Символ клеммы	Название клеммы	Описание функций клеммы
	+10B-GND	Источник питания +10В	Обеспечивает +10В питания на внешний блок. Максимальный выходной ток: 10мА. Как правило, обеспечивает питание внешнего потенциометра с диапазоном сопротивлений от 1 до 5 kΩ
Источник питания	+24B-COM	Источник питания +24B	Обеспечивает +24В питания на внешний блок. Как правило, обеспечивает подачу питания на клеммы DI/DO и внешние датчики. Максимальный выходной ток: 200 мА
	PLC	Входные клеммы внешнего источника питания	Подключается с +24В по умолчанию
Аналоговы	AII-GND	Аналоговый вход 1	 Диапазон ввода: DC 0В10В/0мА20мА, в зависимости от перемычки JP2 на плате управления. Сопротивление: 22 kΩ (сигнал напряжения), 500 Ω (токовый сигнал).
й вход	AI2-GND	Аналоговый вход 2	 Диапазон ввода: DC 0В10В/ 0мА20мА, в зависимости от перемычки JP3 на плате управления Сопротивление: 22 kΩ (сигнал напряжения), 500 Ω (токовый сигнал)
	DI1 DI2 DI3	Цифровой вход 1 Цифровой вход 2 Цифровой вход 3	1. Оптическая развязка, совместимая со входом с двойной полярностью
	DI4	Цифровой вход 4	2ю Сопротивление: 2.4 kΩ
Цифровой	DI5	Цифровой вход 5	3. Диапазон напряжения для входа уровня:
вход	DI6	Цифровой вход 6	9B30B
	HDI	Высокоскоростная импульсная входная клемма	Помимо функций DI1DI6 может быть использована для высокоскоростного импульсного входа Максимальная частота на входе: 50кГц
	AO1-GND	Аналоговый выход 1	Выход напряжения или тока определяется перемычкой Јб. Диапазон выходного напряжения: 0В10В
Аналоговы й выход	AO2-GND	Аналоговый выход 2	Диапазон выходного тока: 0мА20мА Выход напряжения или тока определяется перемычкой J13. Диапазон выходного напряжения: 0В10В Диапазон выходного тока: 0мА20мА
Цифровой выход	DO1-CME	Цифровой выход 1	Изоляция оптической связи, выход с открытым коллектором с двойной полярностью. Диапазон выходного напряжения: 0В24В Диапазон выходного тока: 0мА50мА Обратите внимание, что СМЕ и СОМ внутренне изолированы, но они запираются перемычкой извне по умолчанию. В этом случае DO1 управляется +24В. Для управления DO1 с помощью внешнего источника удалите перемычку между СМЕ и СОМ.
	FM- COM	Высокоскоростная импульсная выходная клемма	Устанавливается с помощью b4-00 (выбор режима вывода клеммы FM) Для высокоскоростного имп. выхода максимальная частота – 100кГц. Для выхода с открытым коллектором ф-ция аналогична DO1.
Релейный	TA1/2-TB1/2	Клемма NC	Контактная мощность: \sim 250 B, 3 A, COS ϕ = 0.4

Тип	Символ клеммы	Название клеммы	Описание функций клеммы
выход	TA1/2-TC1/2	Клемма NO	DC 30 B, 1 A
	J3	Интерфейс платы расширения	Подключается к дополнительной плате (плата расширения ввода/вывода, плата ПЛК и различные платы шины)
Вспомогат ельный интерфейс	J1	Интерфейс PG- платы	Поддержка различных видов РG-плат: ОС, дифференциальных, UVW ABZ и преобразователя.
	J10	Расширение связей	Обратная
	J2	Интерфейс внешней клавиатуры	Внешняя клавиатура

3.10.4 Подключение аналоговых входных клемм

При использовании сигнала напряжения в качестве аналогового входа он становится уязвимым для внешних помех. Используйте экранированный кабель и убедитесь, что он надежно заземлен. Кабель должен быть как можно короче и должен быть расположен далеко от линий электропередач. В случае серьезных помех возможно добавление фильтра-конденсатора или ферритового сердечника в сигнальный кабель.

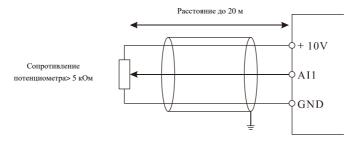
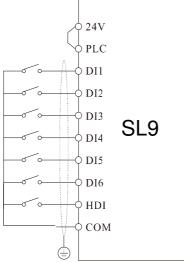
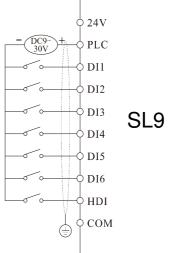



Рис. 3-13 Подключение аналоговых входных клемм


3.10.5 Подключение многофункциональных входных клемм

Режим 1 (Режим по умолчанию): Внешний источник питания не используется, когда DI в PNP режиме.

Режим 2: Внешний источник питания используется, когда DI в PNP режиме. 24V ¢ 24V

Режим 3: Внешний источник питания не используется, когда DI в NPN режиме

Режим 4: Внешний источник питания используется, когда DI в NPN режиме

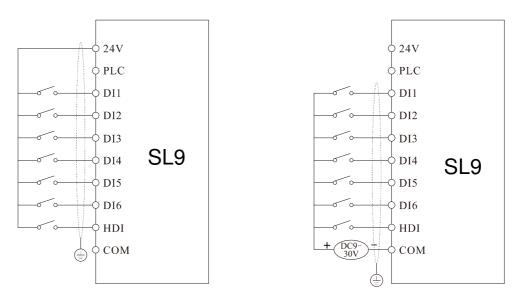
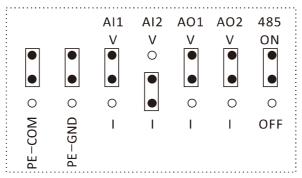



Рис. 3-14 Подключение цифровых клемм в четырех различных режимах

3.10.6 Описание перемычки цепи управления

Название перемычки	Описание функции	Настройки по умолчанию
PE-COM	Когда перемычка в положении СОМ, она соединяет СОМ с контуром заземления. Когда перемычка отключена, связь сежду ними отсутствует	СОМ
PE-GND	Когда перемычка в положении GND, она соединяет COM с контуром заземления. Когда перемычка отключена, связь сежду ними отсутствует	GND
Al1	Когда перемычка установлена в режим V, AI1 в режиме напряжения (010В) Когда перемычка установлена в режим I, AI1 в режиме тока (020мA)	V
Al2	Когда перемычка установлена в режим V, AI2 в режиме напряжения (010В) Когда перемычка установлена в режим I, AI2 в режиме тока (020мA)	I
AO1	Когда перемычка установлена в режим V, AO1 в режиме напряжения (010В) Когда перемычка установлена в режим I, AO1 в режиме тока (020мA)	V
AO2	Когда перемычка установлена в режим V, AO2 в режиме напряжения (010В) Когда перемычка установлена в режим I, AO2 в режиме тока (020мA)	V
485	В положении ON подключается коммуникационный резистор. В положении OFF он отключается	OFF

4. Управление и мониторинг

4.1 Инструкции к управлению и мониторингу

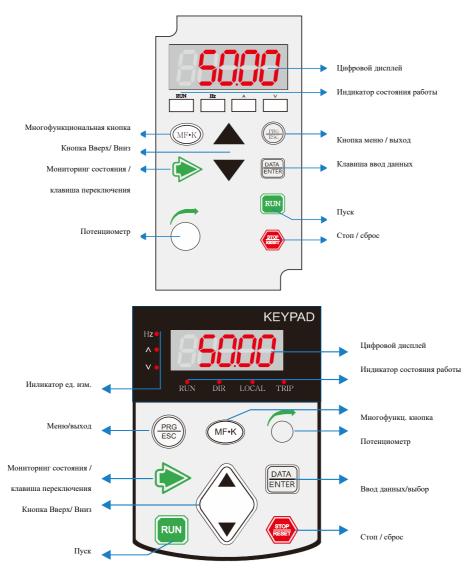


Рис. 4-1 Панель управления

1. Описание индикаторов

RUN: Откл – работа преобразователя частоты приостановлена, Вкл – преобразователь частоты находится в режиме работы.

LOCAL: Указывает на способ управления преобразователем: панель, клеммы или дистанционное управление.

Откл – управление с панели клавиатурой, Вкл – управление с клемм, мигающий индикатор – дистанционное управление.

DIR: Индикатор «вперед/назад», Вкл – прямое вращение.

TRIP: Индикатор Настройка/ Управление моментом/Ошибка

Вкл – режим управления крутящим моментом, медленное мигание индикатора – автонастройка, быстрое мигание индикатора – сбой.

2. Индикатор единиц измерения

Нz: Частота;

А: Ток;

V: Напряжение;

3. Цифровой дисплей

Пятисимвольный LED дисплей отображает заданную частоту, выходную частоту, данные и коды ошибок.

4. Описание клавиш на панели управления (клавиатура)

Таблица 4-1 Функции клавиатуры

Кнопка	Наименование	Функция
PRG/ESC	Программирование	Вход или выход из первого уровня меню.
DATA/ENTER	Подтверждение	Вход на более низкий уровень меню и подтверждение значения параметра.
A	Увеличение	Увеличение значения или номера функционального кода.
•	Уменьшение	Уменьшение значения или номера функционального кода.
♠	Переключение	Выбор отображаемых параметров поочередно в режиме работы или остановки. Выбор символа при изменении параметров.
RUN	Запуск	Запуск частотного преобразователя в режиме управления панелью.
STOP/RESET	Остановка/Сброс	Остановка преобразователя частоты во время работы и сброс в случае сбоя. Функции данной кнопки ограничены b9-00.
MF.K	Многофункциональ- ность	Переключение функций согласно настройкам b9-01.

4.2 Просмотр и изменение функциональных кодов

Панель управления SL9 использует трехуровневое меню.

Меню состоит из группы функциональных кодов (Уровень 1), функционального кода (Уровень 2) и значения настройки функционального кода (Уровень 3), как показано на рисунке.

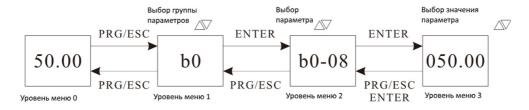


Рис. 4-2 Порядок работы с панелью управления

Инструкция: Вернуться к уровню 2 с уровня 3 возможно, нажав PRG или ENTER.

Разница в том, что:

После нажатия кнопки ENTER система сохраняет настройку параметров, возвращается к уровню 2 в меню и переходит к следующему функциональному коду.

После нажатия кнопки PRG система не сохраняет настройку параметров, а сразу возвращается к уровню 2 в меню и остается на том же функциональном коде.

Если символ параметра не мигает на уровне 3, это значит, что параметр не может быть изменен. Возможные причины:

- 1. Это неизменяемые функциональные коды, такие как: фактические параметры тестирования, записи операций и т.д.
- 2. Данный функциональный код не может быть изменен во время работы, но может быть изменен после остановки.

4.3 Контроль параметров состояния

В состоянии остановки или работы нажмите " папанели для отображения статуса параметров. Отображение параметров определяется двоичными значениями, задаваемыми параметрами b9-02(параметр запуска 1), b9-03(параметр запуска 2) и b9-04(параметр остановки) в шестнадцатеричном формате.

В состоянии остановки есть 16 статусных параметров, которые могут отображаться по выбору: настройка частоты, напряжение на шине, состояние входов DI, состояние выходов DO, напряжение аналогового входа AI1, напряжение аналогового входа AI2, напряжение аналогового входа AI3, значение счетчика, значение длины, шаг программы ПЛК, скорость загрузки, установка ПИД- регулятора, входная частота импульсного входа и три резервных параметра. Существует 5 параметров состояния работы: рабочая частота, установленная частота, напряжение на шине, выходное напряжение и выходной ток. Эти пять параметров отображаются по умолчанию. Другие отображающиеся параметры включают в себя: выходную мощность,

по умолчанию. Другие отображающиеся параметры включают в себя: выходную мощность, выходной крутящий момент, состояние входа DI, состояние выхода DO, напряжение аналогового входа AI1, напряжение аналогового входа AI2, напряжение аналогового входа AI3, значение счетчика, значение длины, линейную скорость, настройку ПИД-регулятора, обратную связь ПИД-регулятора и т.д. Вы можете влиять на отображение этих параметров при помощи установки b9-02 и b9-03.

В случае перезагрузки частотного преобразователя после сбоя в питании параметра остаются такими же, как до сбоя, и отображаются.

4.6 Настройки пароля

Частотный преобразователь оснащен функцией защиты паролем. Если для A0-00 установлено ненулевое значение, значение - это пароль пользователя. Пароль начинает работать после выхода из режима редактирования функциональных кодов. При нажатии клавиши PRG на экране отобразится "-----", и необходимо будет ввести правильный пароль пользователя для входа в меню. Для отключения функции защиты паролем введите пароль и установите A0-00 как 0.

4.7 Автонастройка параметров мотора

Выберите режим векторного управления, прежде чем преобразователь частоты начнет работать, необходимо правильно вписать паспортный параметр двигателя с помощью клавиатуры. Частотный преобразователь SL9 будет соответствовать стандартным параметрам двигателя согласно заводской табличке; режим векторного управления во многом зависит от параметров двигателя. Если Вы хотите добиться хорошей производительности, необходимо ввести точные параметры управляемого двигателя.

Процесс автонастройки двигателя:

Во-первых, выберите в каестве источника команд (b0-02) панель. Затем впишите в фактические параметры двигателя следующие параметры (согласно заводской табличке двигателя):

Двигатель	Параметр		
Двигатель 1	b0-00: Выбор типа двигателя d0-01: Номинальное напряжение d0-03: Номинальная частота	d0-00: Номинальная мощность d0-02: Номинальный ток d0-04: Номинальная скорость	
Двигатель 2	b0-00: Выбор типа двигателя d2-01: Номинальное напряжение d2-03: Номинальная частота	d2-00: Номинальная мощность d2-02: Номинальный ток d2-04: Номинальная скорость	

Настройка асинхронного двигателя переменного тока

Если двигатель отсоединен от нагрузки, установите для параметра d0-30/d2-30 значение 2 (автоматическая настройка асинхронного двигателя), затем нажмите клавишу RUN на клавиатуре. Преобразователь частоты автоматически рассчитает следующие параметры двигателя:

Двигатель	Параметр		
Двигатель 1 (Двигатель 2)	d0-05(d3-05): Сопротивление статора (асинхронный двигатель) d0-06(d3-06): Сопротивление ротора (асинхронный двигатель) d0-07(d3-07): Индуктивное сопротивление утечки (асинхронный двигатель d0-08(d3-08): Взаимное индуктивное сопротивление (асинхронный двигатель)		

Завершение автонастройки параметров мотора Если двигатель не может быть полностью отсоединен от нагрузки, установите для параметра d0-30/d2-30 значение 1 (асинхронная статическая автонастройка) и нажмите клавишу RUN на клавиатуре.

И преобразователь частоты автоматически рассчитает следующие параметры двигателя:

Двигатель	Параметр
	d0-05: Сопротивление статора (асинхронный двигатель) d0-06: Сопротивление ротора (асинхронный двигатель)

Описание идентификации синхронного двигателя:

Поскольку синхронная машинная система, управляемая SL9, нуждается в обратной связи с энкодера, необходимо правильно установить параметр энкодера перед идентификацией.

Во время процесса идентификации синхронной системы необходимо вращательное движение. Лучший метод идентификации – это динамическая идентификация без нагрузки. Если условия этого не позволяют, возможна динамическая идентификация с нагрузкой.

5. Описание функциональных кодов

5.1 Группа b0: Базовые функциональные параметры

ĺ	Код	Название параметра	Диапазон настройки	По
	, ,	1 1	, ,	умолчанию
	b0-00	Выбор типа двигателя	0: асинхронный двигатель переменного тока	0
	00-00	выоор типа двигателя	1: Синхронный двигатель на пост. магнитах	

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Режим	0: Векторное управление без датчика (SVC)	
b0-01	управления	1/2: Вольт-частотное управление	2
	двигателем	3:Векторное управление с датчиком (FVC)	

Бит единиц и бит десятков – это выбор режима управления двигателем 1 и двигателем 2.

• 0: Векторное управление без датчика (SVC)

Векторное управление с открытым контуром. Применимо к высокопроизводительным приложениям, таким как: станок, центрифуга, машина для волочения проволоки и машина для литья под давлением. Один преобразователь частоты может работать только с одним двигателем.

• ½: Вольт-частотное управление (V/F)

Применим к приложениям с низкой нагрузкой или приложениям, где один преобразователь частоты работает с несколькими двигателями, такими как: вентилятор и насос.

• 3: Векторное управление с замкнутым контуром (FVC)

Применим к высокоточным системам контроля скорости или управления крутящим моментом, таким как: высокоскоростная машина для производства бумаги, кран или лифт. Один преобразователь частоты может работать только с одним двигателем. Энкодер должен быть установлен со стороны двигателя, а PG-плата, соответствующая энкодеру должна быть установлена со стороны частотного преобразователя.

Примечание: Если используется векторное управление, необходимо выполнить автонастройку двигателя, поскольку преимущества векторного управления могут быть использованы только после получения правильных параметров двигателя. Лучшей производительности можно достичь с помощью регулировки параметров скорости в группе «d».

Для постоянного магнитного синхронного двигателя SL9не поддерживает SVC. Обычно используется FVC. Для некоторых низкомощных двигателей также можно использовать вольтчастотное управление.

Код	Название	Название Диапазон настройки	
	параметра		умолчанию
	Выбор источника	0: Управление клавиатурой (Светодиод выкл.)	
b0-02	1	1: Управление клеммами (Светодиод вкл.)	0
	команды	2: Управление через интерфейс (Светодиод мигает)	

Используется для определения входного канала команд управления частотного преобразователя, таких как: запуск, остановка, прямое вращение, обратное вращение и толчковый режим. Вы можете вводить команды в трех каналах:

0: Управление клавиатурой ("LOCAL/REMOT" индикатор выкл.)

Команды подаются нажатием клавиш "RUN" и "STOP/RESET" на панели управления.

1: Управление клеммами ("LOCAL/REMOT" индикатор вкл.)

Команды подаются с помощью многофункциональных входных клемм с функциями: as FWD, REV, JOGF, and JOGR.

2: Управление счерез интерфейс ("LOCAL/REMOT" индикатор мигает)

Команды подаются с главного компьютера. Для получения дополнительной информации см. Приложение протокола связи.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-03	Выбор основной частоты Х	0: Цифровая настройка (UP/DOWN, без записи после выключения) 1: Цифровая настройка (UP/DOWN, запись после выключения) 2: AI1 3: AI2 4: AI3	10

	: Настройка импульса : Многофункциональный	
7:	:Встроенный ПЛК	
8:	: PID	
9:	: Установка через интрефейс	
10	0. Потенциометр клавиатуры	

Используется для выбора канала настройки основной частоты. Вы можете установить основную частоту в 10 каналах:

0: Цифровая настройка (Предустановленная частота b0-12, возможность модификации UP/DOWN, без записи после выключения)

Начальное значение заданной частоты - b0-12 (Предустановленная частота). Вы можете изменить заданную частоты нажатием ▲ и ▼ на панели управления (или используя функцию UP/DOWN на входных клеммах).

При перезагрузке преобразователя частоты после сбоя заданная частота возвращается к значению b0-12.

1: Цифровая настройка (Предустановленная частота b0-12, возможность модификации UP/DOWN, запись после выключения)

Начальное значение заданной частоты - b0-12 (Предустановленная частота). Вы можете задать частоты нажатием ▲ и ▼ на панели управления (или используя функцию UP/DOWN на входных клеммах).

При перезагрузке преобразователя частоты после сбоя заданная частота остается такой, какой была до сбоя.

Обратите внимание, что b0-10 (запись цифровой настройки частоты сбоя) определяет, будет ли заданная частота запоминаться или удаляться при остановке преобразователя. Это связано с остановкой, а не с отключением питания.

2: AI1

3: AI2

4: AI3

Частота задается аналоговым входом. На плате управления SL9 есть две terminals (AI1, AI2) клеммы аналогового входа (AI). Еще одна клемма AI предоставляется картой расширения ввода-вывода.

AI1: Вход напряжения 0В...10 В или входной ток 4мА...20 мА, определенный перемычкой JP3 на плате управления;

AI2: Вход напряжения 0В...10 В или входной ток 4мА...20мА, определенный перемычкой JP3 на плате управления;

AI3: Вход напряжения -10В...10 В

Соответствующая кривая зависимости между входным напряжением AI1, AI2 и AI3 и целевой частотой может быть определяться пользователем.

При использовании AI в качестве источника задания частоты соответствующее значение 100% входного напряжения/тока соответствует b0-13 (Максимальная частота)

5: Настройка импульса (HDI)

Частота устанавливается с помощью HDI (высокоскоростной импульс). Спецификация сигнала для настройки импульса составляет 9В...30В (диапазон напряжения) и 0 к Γ ц...100 к Γ ц (диапазон частот). Импульс может быть введен только с помощью HDI.

Связь между частотой входных импульсов HDI и соответствующей настройкой настраивается b5-00 - b5-03.

Соответствующее соотношение— это линейное соотношение двух точек. Соответствующее значение 100% от установки импульса составляет b0-13 (Максимальная частота).

6: Многофункциональный

В многосегментном скоростном режиме комбинации разных состояний DI клемм соответствуют разным заданным частотам. SL9 поддерживает максимум 16 скоростей, реализованных 16 комбинациями четырех DI клемм (заданным функциями от 12 до 15) в группе C1. Скорость нескольких сегментов указывает процентное соотношение значения of b0-13 (Максимальная частота). Если для многофункционального канала используется клемма DI, необходимо выполнить соответствующую настройку в группе b3. Для получения подробной информации см. Описание группы b3.

7: Простой ПЛК (встроенный)

Когда в качестве источника частоты используется простой режим контролируемого логического конроллера (ПЛК), частоту преобразователя можно переключать между 16 частотными характеристиками. Вы можете задать время удержания и разгона/торможения 16 частотных характеристик. Для получения подробной информации см. Описание группы C2.

8: PID

В качестве рабочей частоты используется выход ПИД-регулятора. ПИД регулятор обычно

используется в замкнутом контуре управления на месте, например, при управлении с замкнутым контуром постоянного давления и постоянном управлении замкнутым контуром.

При применении ПИД в качестве источника частоты, расположении клавиатуры в меню нулевого класса и управлении с помощью UP/DOWN инвертор автоматически войдет в параметр digital setting(C0-01) для изменения состояния. При отключении питания настройки будут сохранены.

9: Настройка связи

Частота задается посредством связи.

10: Потенциометр клавиатуры

Команда частоты подается потенциометром на клавиатуре. Это действительно только для клавиатуры с потенциометром.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-04	Выбор источника вспомогательной частоты Ү	0: Цифровая настройка (UP/DOWN, без записи после выключения) 1: Цифровая настройка (UP/DOWN, запись после выключения) 2: AI1 3: AI2 4: AI3 5: Настройка импульса (HDI) 6: Многофункциональный 7: Встроенный ПЛК 8: PID 9: Установка через интрефейс 10. Потенциометр клавиатуры	0

При использовании в качестве независимого частотного преобразователя входного канала (источник частоты переключается с X на Y) источник вспомогательной частоты Y используется так же, как и основной источник частоты X (см. b0-03).

Когда источник вспомогательной частоты используется для работы (источником частоты является «операция X и Y») обратите внимание на следующие аспекты:

- Если источником вспомогательной частоты Y является цифровая настройка, заданная частота (b0-12) не вступает в силу. Необходимо напрямую задать основную частоту нажатием клавиш ▲ и ▼ на панели управления (или используя функцию UP/DOWN на входных клеммах).
- 2. Если источником вспомогательной частоты является аналоговый вход (AI1, AI2 and AI3) или импульсная настройка, 100% входного сигнала соответствует диапазону вспомогательной частоты Y (устанавливается в b0-05 и b0-06).
- 3. Если источник вспомогательной частоты настроен на импульс, он аналогичен аналоговому входу. **Примечание:** Основной источник частоты X и источник вспомогательной частоты Y не должны использовать один и тот же канал. То есть, b0-03 и b0-04 не могут быть установлены на одно и то же значение во избежание путаницы.

Код	Название параметра	Диапазон настройки	По	
			умолчанию	
b0-05	Выбор диапазона	0: Относительно максимальной частоты	0	
00-03	вспомогательной частоты Ү	1: Относительно основной частоты Х	U	
b0-06	Диапазон вспомогательной частоты Y	0%150%	100%	

При использовании операции X и Y используются b0-05 и b0-06 для установки диапазона регулировки источника вспомогательной частоты.

Вы можете установить вспомогательную частоту относительно максимальной частоты или основной частоты X. Диапазон настройки вспомогательной частоты изменяется в соответствии с основной частотой X.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-07	Выбор источника частоты	Бит единиц: Выбор источника частоты. 0: Источник основной частоты X 1: Расчет X и Y (Результат вычисления	0

0: X+Y 1: X-Y 2: Максимум	определяется битом десятков) 2: Переключение между X и Y 3: Переключение между X и " Расчет X и Y" 4: Переключение между Y и "Расчет X и Y" Бит десятков: Отношение X и Y	
3: Минимум	2: Максимум	

Используется для выбора канала настройки частоты. Настройка частоты может осуществляться с помощью источника основной частоты X или источника вспомогательной частоты Y.

Если источник частоты включает в себя операции X и Y, Вы можете задать смещение частоты в b0-

08 для суперпозиции на результат операции \bar{X} и Y, удовлетворяя различные требования.

Ī	Код	Название параметра	Диапазон настройки	По
				умолчанию
	b0-08	Смещение частоты вспомогательного источника частоты X и Y	0.00 Гцмаксимальная частота(b0-13)	0.00 Гц

Этот параметр действителен только, когда для источника частоты задано значение «X и Y». Окончательная частота получается путем добавления сдвига частоты, установленного в этом

параметре, к результату операции Х и Ү.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
b0-09	Источник привязки к источнику частоты	Бит единиц: привязка команды клавиатуры к следующему источнику частоты. 0: Нет привязки 1: Источник частоты - с помощью цифровой настройки 2: AII 3: AI2 4: AI3 5: Настройка импульса 6: Многофункциональный 7: Простой ПЛК 8: PID 9: Установка через интрефейс Бит десятков: Привязка клеммы к источнику частоты. 0 - 9, то же, что для бита единиц Бит сотен: Привязка команды интерфейса к источнику частоты. 0-9, то же, что для бита единиц Бит тысяч: Автоматическая привязка к источнику частоты. 0-9, то же, что для бита единиц	0

Используется для связывания трех запущенных источников команд с девятью источниками частоты, что облегчает реализацию синхронного переключения.

Подробнее об источниках частоты см. Описание b0-03 (Выбор источника основной частоты X).

Различные запущенные источники команд могут быть привязаны к одному источнику частоты.

Если источник команды привязан к источнику частоты, этот источник, установленный на b0-03~b0-

07, больше не действует, когда источник команды эффективен.

Код	Название параметра	Диапазон настройки	По умолчанию
b0-10	Запись частоты цифровых настроек отключения	0: Без записи 1: Запись	1

питания	
111111111111111111111111111111111111111	

Этот параметр действителен только когда источник частоты задан цифровой настройкой.

Если для b0-10 задано значение 0, цифровая настройка значения частоты восстанавливается до b0-12 (Предустановленная частота) после остановки частотного преобразователя. Изменение с помощью клавиш ▲ и ▼ или с помощью клемм UP/DOWN очищается до нуля.

Если для b0-10 задано значение 1, цифровая настройка значения частоты – частота, заданная в момент остановки преобразователя частоты. Изменение с помощью клавиш ▲ и ▼ или с помощью клемм UP/DOWN записывается и остается действительным.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-11	Дискретность частоты	1: 0.1 Γ _Ц 2: 0.01 Γ _Ц	2

Используется для установки разрешения всех частотных параметров.

Если разрешение составляет $0.1~\Gamma$ ц, SL9 может выводить до 3000.0Γ ц. Если разрешение составляет $0.01~\Gamma$ ц, SL9 может выводить до $300.00~\Gamma$ ц.

Примечание:

• Изменение этого параметра приведет к изменению десятичных знаков всех связанных с частотой параметров и изменению существующих значений частоты.

• Этот параметр не восстанавливается при возвращении к заводским настройкам.

Код	Название параметра	Диапазон настройки	По умолчанию
b0-12	Предустановленная частота	0.00 максимальная частота (b0-13)	50.00 Гц

Если источником частоты является цифровая настройка или клемма UP/DOWN, значение данного

параметра – это начальная частота частотного преобразователя (цифровая настройка).

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-13	Максимальная частота	50.003000.00 Гц	50.00 Гц

Когда источником частоты является АІ, настройка импульсов (НОІ) или многосегментальная скорость, 100% входного сигнала соответствуют значению этого параметра.

Выходная частота SL9 может достигать 3000Гц. Чтобы принимать обе частоты задающего разрешения и входной диапазон частот во внимание, Вы можете установить количество десятичных разрядов для задания частоты в b0-11.

- Если для b0-11 задано значение 1, разрешение опорной частоты составляет 0.1Гц. В этом случае диапазон настройки b0-13 составляет 50.0...3000.0 Гц.
- Если для b0-11 задано значение 2, разрешение опорной частоты составляет 0.01Гц. В этом случае диапазон настройки b0-13 составляет 50.00...300.00 Гц.

Примечание: После изменения значения b0-11 соответственно изменяется частотное разрешение всех функциональных кодов, связанных с частотой.

Код	Название параметра	Диапазон настройки	По
			умолчанию
		0: Задать (b0-15)	
		1: AI1	
LO 14	Источник верхнего предела	2: AI2	0
b0-14	частоты	3: AI3	0
		4: Настройка импульса (HDI)	
		5: Настройка связи	

Используется для установки источника верхнего предела частоты, включая цифровую настройку (b0-15), AI, настройку импульса или настройку связи. Если верхний предел частоты задан AI1, AI2, AI3, DI5 или связью, настройка аналогична настройке основного источника частоты X. Подробнее см. Описание b0-03.

Например, чтобы избежать утечку в режиме управления моментом в приложении наматывающей машины, Вы можете задать верхний предел частоты с помощью аналогового входа. Когда частотный преобразователь достигнет верхнего предела, он будет работать на этой скорости.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-15	Верхний предел частоты	Нижний предел частоты (b0- 17)максимальная частота (b0-13)	50.00 Гц

Данный параметр используется, чтобы задать верхний предел частоты.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-16	Смещение верхнего предела частоты	0.00 Гцмаксимальная частота(b0-13)	0.00 Гц

Если источником верхнего предела частоты является аналоговый вход или настройка импульса, верхний предел конечной частоты получается путем добавления смещения в этом параметре к верхнему пределу частоты, установленному в b0-14.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-17	Нижний предел частоты	0.00 Гцверхний предел частоты(b0-15)	0.00 Гц

Если команда частоты ниже значения данного параметра, преобразователь частоты может остановиться, или работать на нижнем пределе частоты, или работать на нулевой скорости. Результат может быть определен с помощью b2-17 (режим установки частоты ниже нижнего предела частоты).

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-18	Направление вращения	0: Прямое вращение 1: Обратное вращение	0

Вы можете изменить направление вращения двигателя, изменив этот параметр без изменения подключения двигателя. Изменение данного параметра равнозначно смене любой из двух фаз проводов U, V, W двигателя.

Примечание:

Двигатель восстановит исходное направление движения после инициализации параметра (A0-09). Не используйте эту функцию в случаях, когда изменение направления вращения двигателя запрещено после завершения ввода системы в эксплуатацию.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-19	Базовая частота для изменения UP/ DOWN во время работы	0: Частота работы 1: Частота настройки	0

Данный параметр действителен только когда источником частоты является цифровая настройка. Он используется для изменения базовой частоты с помощью клавиш ▲ и ▼ или клемм UP/DOWN. Если частота работы и частота настройки различаются, производительность преобразователя частоты в процессе ускорения/замедления будет сильно различаться.

Код	Название параметра	Диапазон настройки	По
			умолчанию
	n	0: Линейное ускорение/ замедление	
b0-20	Режим	1: Ускорение/замедление S-кривой А	0
	ускорения/замедления	2: Ускорение/замедление S-кривой В	

Используется для установки режима изменения частоты во время запуска и остановки частотного преобразователя.

0: Линейное ускорение/ замедление

Выходная частота увеличивается или уменьшается в линейном режиме. SL9 предоставляет четыре группы времени ускорения/замедления, которые можно выбрать с помощью многофункциональных клемм DI (b3-00...b3-11).

1: Ускорение/замедление S-кривой А

Выходная частота растет или снижается вдоль кривой S. Этот режим используется в основном в случаях, когда процесс запуска и остановки должен быть относительно плавными. Например, лифт или конвейерная лента. В0-23 и b0-24 соответственно определяют временные пропорции начального и конечного сегментов.

2: Ускорение/замедление S-кривой В

На данной кривой номинальная частота двигателя fb всегда является точкой перегиба кривой S. Этот режим обычно используется в случаях, когда ускорение/замедление должны быть на скорости выше номинальной.

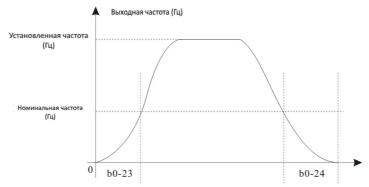


Рис. 5-2 Диаграмма ускорения/замедления S-кривой

Код	Название параметра	Диапазон настройки	По
			умолчанию
		0.00c650.00c (b0-25 = 2)	В
b0-21	Время разгона 1	0.0c6500.0c (b0-25 = 1)	зависимости
		0c65000c (b0-25 = 0)	от модели
		0.00c650.00c (b0-25 = 2)	В
b0-22	Время торможения 1	0.0c6500.0c (b0-25 = 1)	зависимости
		0c65000c (b0-25 = 0)	от модели

Время ускорения определяет время, необходимое частотному преобразователю для ускорения с 0 Γ ц до "Базовая частота ускорения/замедления" (b0-26), то есть t1 на рисунке 6-3. F задает частоту: fb – номинальная частота двигателя, T – время разгона от 0 Γ ц до номинальной частоты fb.

Время торможения определяет время, необходимое частотному преобразователю для замедления от "Базовая частота ускорения/замедления" (b0-26) до 0 Гц, то есть, t2 на рисунке 6-3.

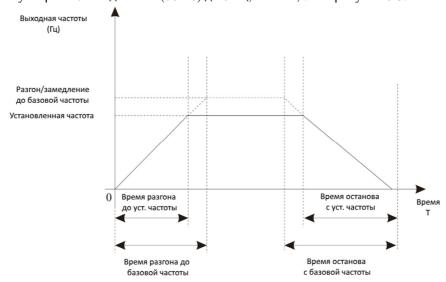


Рис. 5-3 Время разгона/торможения

SL9 предоставляет четыре группы времени разгона/торможения на выбор. Вы можете переключать их, используя клемму DI. Вы также можете задать четыре группы времени разгона/торможения с помощью следующих функциональных кодов:

- Группа 1: b0-21, b0-22
- Группа 2: b2-03, b2-04
- Группа 3: b2-05, b2-06
- Группа 4: b2-07, b2-08

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-23	Временная доля начального сегмента S-кривой	0.0% (100.0% минус b0-24)	30.0%
b0-24	Временная доля конечного сегмента S-кривой	0.0% (100.0% минус b0-23)	30.0%

Эти два параметра определяют временные параметры начального и конечного сегментов ускорения/замедления S-кривой.

На Рис. 6-4 t1 – это время, определенное в b0-23, в пределах которого наклон изменения выходной

частоты постепенно увеличивается, t2 – это время, определенное в b0-24, в пределах которого наклон изменения выходной частоты постепенно уменьшается до 0. Между t1 и t2 наклон изменения выходной частоты остается неизменным (линейное ускорение/замедление).

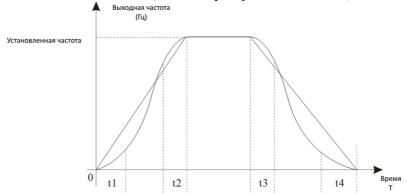


Рис. 5-4 Ускорение/замедление S-кривой А

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-25	Единица времени ускорения/замедления	0:1c 1: 0.1c	1
		2: 0.01c	1

Для удовлетворения требований различных приложений SL9 предоставляет три единицы времени разгона/торможения: 1c, 0.1c и 0.01c.

Примечание: Изменение этого параметра приведет к изменению десятичных знаков всех параметров, связанных с частотой, и изменению соответствующих значений частоты.

Обращайте внимание на это в местном приложении.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b0-26	Базовая частота времени ускорения/замедления	0: Максимальная частота (b0-13)	
		1: Заданная частота	0
		2: 100 Гц	

Время разгона/торможения определяет время, необходимое частотному преобразователю для увеличения от 0 Гц до частоты, заданной в b0-26. На рисунке 6-3 показана диаграмма времени разгона/торможения. Если для данного параметра задано значение 1, время ускорения/замедления связано с заданной частотой. Если заданная частота изменяется часто, ускорение/замедление лвигателя тоже изменяется.

5.2 Группа b1: Параметры управления пуском/остановкой

Код	Название параметра	Диапазон настройки	По
			умолчанию
b1-00	Режим запуска	0: Прямой запуск 1: Перезапуск скорости вращения 2: Предварительное возбуждение (Асинхронный двигатель переменного тока)	0

0: Прямой запуск

Если для времени торможения постоянного тока задано значение 0, частотный преобразователь начинает работать с частоты запуска.

Если время торможения постоянного тока не равно 0, преобразователь частоты сначала выполняет торможение постоянного тока, а затем начинает работать с частоты запуска. Это применимо при малой инерционной нагрузке, а также когда двигатель вращается при запуске.

1: Перезапуск скорости вращения

Частотный преобразователь определяет скорость вращения и направление двигателя, а затем начинает работу с отслеживаемой частотой. Такой плавный запуск не влияет на вращающийся двигатель. Он применим при перезапуске мгновенным отключенем питания в случае больших инерционных нагрузок. Чтобы обеспечить корректный перезапуск, введите корректно параметры двигателя.

2: Предварительное возбуждение (асинхронный двигатель)

Действителен только для асинхронных двигателей и используется для создания магнитного поля до двигателя.

Для тока предварительного возбуждения и времени предварительного возбуждения см. Параметры b1-05 и b1-06.

Если для времени предварительного возбуждения задано значение 0, частотный преобразователь отменяет предварительное возбуждение и начинает работать с частотой запуска.

Если время предварительного возбуждения не равно 0, частотный преобразователь предварительно возбуждается перед началом работы, способствуя улучшению динамического отклика двигателя.

0: От частоты при остановке				
Режим отспеживания	Код	Название параметра	Диапазон настройки	По умолчанию
скорости вращения 1: От нулевой скорости 0	b1-01		1: От нулевой скорости	0

Чтобы завершить процесс отслеживания скорости вращения в кратчайшие сроки, выберите подходящий режим, в котором частотный преобразователь отслеживает скорость вращения лвигателя.

0: От частоты при остановке

Обычный режим.

1: От нулевой скорости

Применим для перезагрузки после длительного отключения питания.

2: От максимальной частоты

Применим при энергогенерирующей загрузке.

-	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. <i>3</i>	
	Код	Название параметра	Диапазон настройки	По
				умолчанию
	b1-02	Скорость отслеживания скорости вращения	1~100	20

В режиме перезапуска отслеживания скорости вращения выберите скорость отслеживания скорости вращения. Чем больше значение – тем быстрее отслеживается скорость. Однако слишком большое значение может привести к неточному отслеживанию.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b1-03	Частота запуска	0.0010.00 Гц	0.00 Hz
b1-04	Время задержки частоты запуска	0.0c100.0c	0.0s

Чтобы обеспечить крутящий момент двигателя при запуске частотного преобразователя, задайте правильную частоту запуска. Кроме того, для создания возбуждения при запуске двигателя частота запуска должна удерживаться в течение определенного времени.

Частота запуска (b1-03) не ограничена нижним пределом. Если заданная целевая частота ниже частоты запуска, преобразователь частоты не запускается и остается в состоянии удержания.

В время переключения между прямым и обратным вращением время удержания частоты запуска отключается. Время удержания входит не во время ускорения, а во время простого ПЛК.

Пример 1:

b0-03 = 0	Источник частоты – цифровая настройка
b0-12 = 2.00 Гц	Частота цифровой настройки = 2.00 Гц.
b1-03 = 5.00 Гц	Частота запуска = 5.00 Гц.
b1-04 = 2.0c	Время задержки при запуске составляет 2.0с.

В данном примере преобразователь частоты остается в состоянии удержания, а выходная частота равна $0.00\,\Gamma$ ц.

Пример 2:

b0-03 = 0	Источник частоты – цифровая настройка
b0-12 = 10.00 Гц	Частота цифровой настройки = 10.00 Гц.
b1-03 = 5.00 Гц	Частота запуска = 5.00 Гц.
b1-04 = 2.0c	Время задержки при запуске составляет 2.0с.

В данном примере преобразователь частоты разгоняется до $5.00~\Gamma$ ц за 2с, а затем ускоряется до заданной частоты $10.00~\Gamma$ ц.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b1-05	Ток при запуске торможения постоянным током/током предварительного	0%100%	0%

	возбуждения		
b1-06	Время при запуске торможения постоянным током/током предварительного возбуждения	0.0c100.0c	0.0c

Торможение при включении постоянного тока обычно используется во время перезапуска преобразователя частоты после остановки вращающегося двигателя. Предварительное возбуждение используется для создания преобразователем магнитного поля для асинхронного двигателя перед запуском, чтобы улучшить отклик.

Торможение постоянным током действительно только для прямого запуска (b1-00=0). В этом случае частотный преобразователь выполняет торможение постоянным током при соответствующем токе. После запуска торможения постоянным током преобразователь начинает работу. Если время торможения равно 0, преобразователь частоты начинает работать без торможения постоянным током. Чем больше ток торможения постоянным током, тем больше сила торможения.

Если режим запуска — предварительное возбуждение (b1-00 = 3), частотный преобразователь сначала создает магнитное поле на основе заданного тока предварительного возбуждения. После предварительного возбуждения частотный преобразователь начинает работу. Если время предварительного возбуждения = 0, преобразователь начинает работать сразу, без предварительного возбуждения.

Ток торможения постоянным током или током предварительного возбуждения – это процент от номинального тока двигателя.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b1-07	Режим остановки	0: Замедление для остановки 1: Свободная остановка	0

0: Замедление для остановки

После включения команды останова частотный преобразователь снижает выходную частоту согласно времени торможения и останавливается, когда частота равна нулю.

1: Свободная остановка

После включения команды останова частотный преобразователь немедленно останавливает выход. Лвигатель своболно останавливается за счет механической инерпии.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b1-08	Начальная частота торможения постоянным током	0.00 Гцмаксимальная частота	0.00 Гц
b1-09	Время ожидания торможения постоянным током	0.0c100.0c	0.0c
b1-10	Ток при торможении постоянным током	0%100%	0%
b1-11	Время при торможении постоянным током	0.0c100.0c	0.0c

• b1-08 (Начальная частота торможения постоянным током)

Во время остановки частотный преобразователь запускает торможение постоянным током, когда рабочая частота ниже значения, заданного в b1-08.

• b1-09 (Время ожидания торможения постоянным током)

Когда рабочая частота уменьшается до начальной частоты торможения постоянным током, частотный преобразователь останавливает выход на определенное время, а затем запускает торможение постоянным током. Это предотвращает такие сбои, как превышение тока, вызванное торможением постоянным током на высокой скорости.

• b1-10 (Ток при торможении постоянным током)

Данный параметр определяет выходной ток при торможении постоянным током и находится в процентном соотношении с номинальным током двигателя. Чем больше значение, тем сильнее эффект торможения, но тем выше температура двигателя и излучение преобразователя.

• b1-11 (Время торможения постоянным током)

Этот параметр определяет время выдержки при торможении постоянным током. Если значение = 0, торможение отменяется. Процесс торможения постоянным током показан на следующем рисунке.

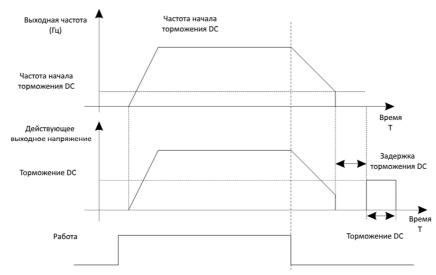


Рис. 5-5 Процесс торможения постоянным током

5.3 Группа b2: Вспомогательные функции

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-00	Частота работы JOG	0.00 Гцмаксимальная частота	6.00 Гц
b2-01	Время ускорения JOG	0.0c6500.0c	Зависит от модели
b2-02	Время замедления JOG	0.0c6500.0c	Зависит от модели

Эти параметры используются для определения заданной частоты и времени ускорения/замедления частотного преобразователя в JOG режиме. Режим запуска задается как «Прямой пуск» (b1-00 = 0), а

режим останова – как «Замедление до остановки» (b1-07 = 0).

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-03	Время ускорения 2	0.0c6500.0c	Зависит от
			модели
b2-04	Время замедления 2	0.0c6500.0c	Зависит от
02 0 1	Бремя замедления 2	0.000200.00	модели
1.0.05		0.0 (500.0	Зависит от
b2-05	Время ускорения 3	0.0c6500.0c	модели
			Зависит от
b2-06	Время замедления 3	0.0c6500.0c	модели
			, ,
b2-07	Время ускорения 4	0.0c6500.0c	Зависит от
	1 2 1		модели
b2-08	Время замедления 4	0.0c6500.0c	Зависит от
02-00	Бремя замедления 4	0.000300.00	модели

SL9 предоставляет в общей сложности четыре набора времени замедления/ускорения, то есть три вышеуказанных группы и группы b0-21 и b0-22. Определения четырех групп полностью совпадают, подробности см. в Описании b0-21 и b0-22. Вы можете переключаться между четырьмя группами времени ускорения/замедления с помощью разных комбинаций клемм DI. Для получения

лополнительной информации см. Описание b3-01 - b3-011.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-09	Частота перескока 1	0.00 Гцмаксимальная частота	0.00 Гц
b2-10	Частота перескока 2	0.00 Гцмаксимальная частота	0.00 Гц
b2-11	Частотный диапазон перескока	0.00 Гцмаксимальная частота	0.00Гц

Если частота настройки находится в пределах частотной амплитуды перескока, фактическая рабочая частота представляет собой частоту скачка, близкую к заданной частоте. Установка частоты перескока помогает избежать механического резонанса в нагрузке. SL9 поддерживает две частоты

перескока. Если оба параметра заданы как 0, функция частоты перескока отключается. Принцип частот перескока и амплитуды перескока показаны на рис. 5-6.

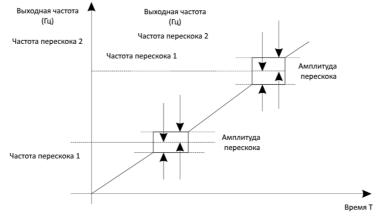


Рис. 5-6 Принцип частот перескока и амплитуды перескока

Код	Название параметра	Диапазон настройки	По умолчанию
b2-12	Частота перескока во время ускорения/замедления	0: Откл. 1: Подкл.	0.00Гц

Используется, чтобы установить, являются ли частоты перескока действительными во время ускорения/замедления.

Когда частоты перескока действительны во время ускорения/замедления, и рабочая частота находится в пределах частотного диапазона перескока, фактическая рабочая частота перескочит к верхней границе заданного частотного диапазона перескока (проскакивает от нижней частоты проскока до верхней частоты проскока). На следующем рисунке показана диаграмма доступности частоты перескока во время ускорения/замедления.

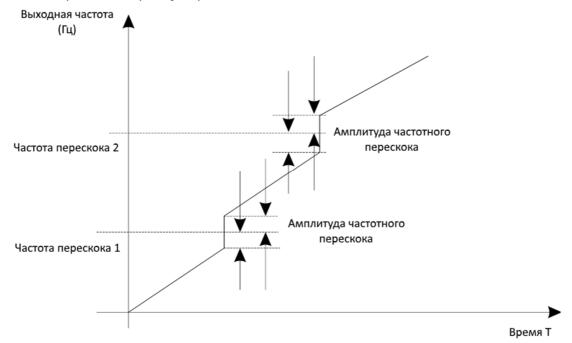


Рис. 5-7 Диаграмма доступности частоты перескока во время ускорения/замедления.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-13	Точка переключения частоты между временем ускорения 1 и временем ускорения 2	0.00 Гцмаксимальная частота	0.00 Гц
b2-14	Точка переключения частоты между временем замедления 1 и временем замедления 2	0.00 Гцмаксимальная частота	0.00 Гц

Функция действительна, когда выбран двигатель 1 и переключение времени ускорения/замедления

не совершается с помощью клемм DI. Используется во время работы частотного преобразователя для выбора групп времени ускорения/замедления на основе диапазона рабочей частоты, а не на основе клемм DI.

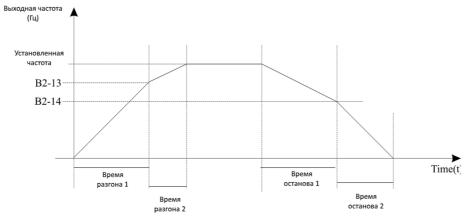


Рис. 5-8 Переключение времени ускорения/замедления

Во время ускорения, если рабочая частота меньше значения b2-13, выбирается время ускорения 1. Если рабочая частота больше значения b2-13, выбирается время ускорения 2.

Во время замедления, если рабочая частота больше значения b2-14, выбирается время замедления 1.

Если рабочая частота меньше значения b2-14, выбирается время замедления 2.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-15	Обратный ход	0: Подкл.	0
02-13	Ооратный ход	1: Откл.	U

Используется для управления обратным вращением частотного преобразователя. В случаях, когда

обратное вращение запрещено, установите значение 1 для данного параметра.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-16	Запрещенное время при реверсировании	0.03000.0c	0.0c

Используется для установки времени, когда выход равен 0 Гц при переходе преобразователя частоты к прямому или обратному вращению, как показано на следующем рисунке.

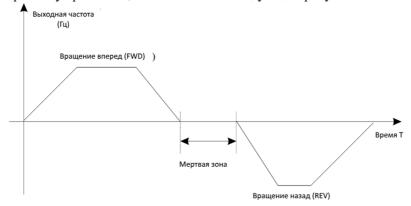


Рис. 5-9 Запрещенное время при реверсировании

Код	Название параметра	Диапазон настройки	По
		•	умолчанию
b2-17	Режим работы при заданной частоте ниже предела частоты	0: Запуск на нижнем пределе частоты 1: Стоп 2: Запуск на нулевой скорости	0

Используется для установки режима работы частотного преобразователя, когда заданная частота ниже предела частоты. SL9 предоставляет три режима работы для удовлетворения требований

различных приложений.

Код Название параметра Диапазон настройки По умолчанию

b2-18 Управление потерей нагрузки 0.00Гц...10.00 Гц 0.00 Гц

Данная функция используется для балансировки распределения рабочей нагрузки, когда используется

несколько двигателей для управления одной и той же нагрузкой. Выходная частота частотного преобразователя снижается при увеличении нагрузки. Вы можете уменьшить нагрузку на двигатель, уменьшив выходную частоту для данного двигателя, выполняя балансировку рабочей нагрузки между несколькими двигателями.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-19	II IOC	0: Откл.	0
02-19	Приоритет клеммы JOG	1: Подкл.	U

Используется для определения приоритета клеммы JOG.

Если клемма JOG является приоритетной, частотный преобразователь переключается в состояние работы клеммы JOG при наличии команды JOG во время процесса работы частотного преобразователя.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-20	Установка порога достижения времени включения питания	065000 ч	0 ч

Если время накопления мощности (b9-08) достигает значения, заданного в данном параметре, включается соответствующий выходной сигнал клеммы дискретного выхода.

Например, объединяя виртуальные функции дискретного выхода и входа, чтобы реализовать функцию, с помощью которой частотный преобразователь сообщает о тревоге, когда фактическое накопительное время включения питания достигает порогового значения в 100 часов, совершите настройку, которая позволяет:

- 1. Задайте виртуальный дискретный вход DI1 для пользовательской ошибки: b7-00 = 44.
- 2. Задайте действительное состояние виртуального дискретного входа DI1 от виртуального дискретного выхода DO1: b7-05 = 0000.
- 3. Задайте виртуальный дискретный выход DO1 на достижение времени подключения: b7-11= 24.
- 4. Задайте порог накопительного времени подключения питания на 100ч: b2-20 = 100 h.

Затем задайте выход аварийного сигнала Егг27 частотного преобразователя, когда накопительное время достигнет 100 часов.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-21	Установка достижения порога рабочего времени	065000 ч	0 ч

Используется для установки достижения частотным преобразователем порога рабочего времени. Если накопительное рабочее время (b9-09) достигает значения, заданного в этом параметре, соответствующая клемма дискретного выхода включается.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-22	Действие после достижения	0: Продолжение работы	0
02-22	времени работы	1: Стоп	

Данная функция используется для определения действия после достижения предустановленного времени b2-21. При установке значения 0 преобразователь продолжит работать после достижения предустановленного времени; при установке значения 1 преобразователь остановится.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-23	Контроль охлаждающего вентилятора	0: Вентилятор работает во время работы 1: Вентилятор работает при включении питания	0

Используется для установки режима работы охлаждающего вентилятора. Если для данного параметра задано значение 0, вентилятор работает, когда частотный преобразователь находится в рабочем состоянии. Когда преобразователь останавливается, вентилятор работает, если температура радиатора выше 40°С и останавливается, если температура ниже 40°С.

Если для данного параметра задано значение 1, охлаждающий вентилятор продолжает работу после включения питания.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-24	Частота спящего режима	0.00Гцчастота пробуждения (b2-26)	0.00 Гц
b2-25	Время задержки сна	0.0c6000.0c	0.0c

b2-26	Частота пробуждения	Частота спящего режима (b2- 24)максимальная частота (b0-13)	0.00 Гц
b2-27	Время задержки пробуждения	0.0c6000.0c	0.0c

Эти параметры используются для реализации функции сна и функции пробуждения в приложении подачи воды.

Когда частотный преобразователь находится в состоянии работы, он переходит в состояние сна и останавливается автоматически после времени задержки сна (b2-25), если частота ниже или равна частоте спящего режима (b2-24).

Когда частотный преобразователь находится в спящем режиме и текущая команда работы действительна, частотный преобразователь запускается после времени задержки пробуждения (b2-27), если заданная частота выше или равна частоте пробуждения (b2-26).

Как правило, настройка частоты активизации должна быть равна или выше, чем частота покоя. Если частота активизации и покоя установлены на 0,в таком случае функции спящего режима и пробуждения отключены.

Когда функция спящего режима включена, если источником частоты является ПИД, выполняется ли работа ПИД в состоянии покоя или нет определяется С0-27. В этом случае выберите работу ПИД,

разрешенную в состоянии останова (С0-27 = 1).

Код	Название параметра	Диапазон настройки	По
			умолчанию
1-2-20	Финания тойнинго	0: Откл.	0
b2-28	Функция тайминга	1: Подкл.	U
	Источник времени тайминга	0: b2-30	
		1: AI1	
b2-29		2: AI2	0
02-29		3: AI3	U
		(100% аналогового входа соответствует	
		значению b2-30)	

b2-30 Длительность тайминга 0.0мин...6500.0 мин 0.0 мин

Данные параметры используются для реализации функции тайминга частотного преобразователя. Если для параметра b2-28 задано значение 1, частотный преобразователь запускает тайминг при запуске. Когда заданная длительность тайминга будет достигнута, преобразователь автоматически остановится, а соответствующий сигнал DO выдаст сигнал Вкл.

Частотный преобразователь начинает отсчет времени с 0.0 мин при каждом запуске, а оставшееся время можно проверить с помощью U0-20.

Длительность тайминга устанавливается в b2-29 и b2-30, счетная единица – минута.

Код	Название параметра	Диапазон настройки	По умолчанию
b2-31	Время работы достигло порога	0.0мин6500.0 мин	0.0 мин

Если текущее время работы достигает значения, заданного для данного параметра, соответствующий DO выдает сигнал Вкл., указывая что достигнуто заданное время работы.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b2-32	Защита при запуске	0: Нет 1: Да	0

Данный параметр используется для обеспечения безопасности частотного преобразователя. Если задано значение 1, преобразователь не реагирует на команду запуска после включения питания (например, перед включением питания входная клемма включена).

Частотный преобразователь реагирует только после отмены команды запуска и снова работает.

Кроме того, преобразователь не реагирует на команду запуска, действующую после сброса ошибки. Защита запуска может быть отключена только после однократной отмены команды запуска.

Таким образом, двигатель не запустится автоматически, чтобы избежать непредвиденных опасных условий для этих команд запуска при включении питания или сбросе ошибки.

5.4 Группа b3: Входные клеммы

SL9 обеспечивает шесть цифровых входных (DI) клемм (HDI может использоваться для высокоскоростного импульсного входа) и две аналоговых входных клеммы (AI). Дополнительная плата расширения обеспечивает еще шесть цифровых входных клемм (DI7 - DI12) и одну аналоговую входную клемму (AI3).

Код	Название параметра	По умолчанию	Диапазон
b3-00	Выбор функции DI1	1: ПУСК ВПЕРЕД(FWD)	
b3-01	Выбор функции DI2	2: ПУСК НАЗАД (REV)	
b3-02	Выбор функции DI3	6: Многофункциональная клемма 1	
b3-03	Выбор функции DI4	7: Многофункциональная клемма 2	0~49
b3-04	Выбор функции DI5	8: Многофункциональная клемма 3	
b3-05	Резерв	0: Многофункциональная клемма 4	
b3-06	Выбор функции HDI	32	

В следующей таблице перечислены функции, доступные для цифровых входных клемм. Таблица 6-1 Функции цифровых входных клемм

Значение		Описание
	•	Задайте значение 0 для зарезервированных клемм, чтобы
0	Не работает	избежать сбоев.
	Прямой ЗАПУСК	
1	(FWD) или команда	
	запуска	Клемма используется для управления прямым или
	Обратный ЗАПУСК	обратным запуском частотного преобразователя.
2	(REV) или направление	
	FED/REV	
	Трехпроводное	Клемма определяет трехпроводное управление
3	управление	частотным преобразователем. Для подробностей см.
	7 -	Описание b3-13.
4	Прямой джоггинг	FJOG указывает на прямой джоггинг, в то время как
	(FJOG) Обратный джоггинг	RJOG указывает на обратный джоггинг. Частота
5	(RJOG)	джоггинга, время разгона и торможения описаны в b2-00, b2-01 и b2-02 соответственно.
6	Многофункц. клемма 1	
7	Многофункц. клемма 2	Настройка 16 скоростей или 16 других ссылок может
8	Многофункц. клемма 3	быть реализована посредством комбинаций 16 состояний
9	Многофункц. клемма 4	данных клемм.
10	Клемма ВВЕРХ (UP)	Если частота определяется внешними клеммами, клеммы
	Клемма ВНИЗ (DOWN)	с двумя функциями используются как команды
11		увеличения и уменьшения для изменения частоты.
11		Когда источник частоты – цифровая настройка, они
		используются для регулировки частоты.
		Если источником частоты является цифровая настройка,
4.0	Очистка настройки UP	клемма используется для очистки настройки с помощью
12	and DOWN (клемма,	функции UP/ DOWN или клавиши
	панель управления)	увеличения/уменьшения на панели управления,
	Клемма 1 для выбора	возвращая установленную частоту к значению b0-12.
13	времени	
13	ускорения/замедления	Всего через комбинации двух состояний этих клемм
	Клемма 2 для выбора	можно выбрать четыре группы времени
14	времени	разгона/торможения.
	ускорения/замедления	
15	Переключение	Клемма используется для переключения между двумя
13	источника частоты	источниками частоты согласно настойке b0-07.
	Переключение между	
16	основным источником	После включения этой клеммы источник частоты X
	частоты Х и заданной	заменяется заданной частотой (b0-12).
	частотой	
	Переключение между	П
17	источником	После включения данной клеммы источник вспомогательной частоты Y заменяется заданной
1 /	вспомогательной частоты Y и заданной	частотой (b0-12).
	частоты т и заданной	1401010n (00-12).
	100101011	

Значение	Функция	Описание
		Если для источника команд задано управление клеммой
		(b0-02 = 1), эта клемма используется для совершения
	Клемма 1 для	переключения между управлением клеммой и
18	переключения	управлением с помощью панели управления.
10	источника команд	Если для источника команд задано управление связью
	источника команд	(b0-02 = 2), эта клемма используется для переключения
		между управлением связью и управлением панелью
		управления.
	I/ 2	Используется для переключения между управлением
19	Клемма 2 для	клеммой и управлением связью. Если управление
19	переключения источника команд	клеммой задано как источник команд, система
	источника команд	переключится на управление связью, когда данная клемма включится.
		Данная клемма позволяет частотному преобразователю
		переключаться между управлением скоростью и
	Управление	контролем крутящего момента. Когда эта клемма
20	•	выключается, частотный преобразователь работает в
	е крутящего момента	режиме, заданном в d1-00. Когда клемма включается,
		частотный преобразователь переключается на другой
		режим управления.
21	Управление крутящим	Запрет на управление крутящим моментом, работа в
21	моментом запрещено	режиме управления скорость.
		PID временно недоступен. Частотный преобразователь
22	Пауза PID	поддерживает текущий частотный выход без поддержки
		PID-регулятора источника частоты.
		После включения этой клеммы функция интегральной
23	Интегральная пауза PID	настройки приостанавливается, но пропорциональные и
		дифференциальные функции по-прежнему
		действительны.
24	Обратное направление PID-регулятора	После включения данной клеммы направление действия PID-регулятора изменится на противоположное, заданное
24		в С0-04.
		Если переключение параметров PID производится с
	п	помощью клеммы DI ($C0-12=1$). Когда клемма
25	Переключение	отключается, параметры PID равны: C0-06C0-08; когда
	параметра PID	клемма включена, параметры меняются на: С0-09 С0-
		11.
		Клемма используется для восстановления исходного
26	Сброс состояния PLC	состояния управления PLC для преобразователя частоты,
		когда PLC снова запускается после паузы.
22	Импульсный вход	IIDI
32	(включен только для	HDI используется для импульсного входа.
	HDI/HDI)	Посна вущенания этой илема и честоти ч
33	Изменение частоты	После включения этой клеммы частотный преобразователь не реагирует на изменение частоты.
	запрещено	Позволяет преобразователю частоты сохранять текущую
34	Ускорение/замедление	выходную частоту без воздействия внешних сигналов
	запрещено	(кроме команды СТОП)
	TC ~	С помощью данной клеммы может быть произведено
35	Клемма выбора	переключение между двумя группами параметров
	двигателя 1	двигателя.
36	Клемма выбора	Резервицій
30	двигателя 2 (резервный)	Резервный.
		Клемма используется для функции сброса ошибки, так
37	Сброс ошибки (RESET)	же как функция клавиши RESET на панели управления.
		Эта функция выполняет дистанционный сброс ошибки.
20	Нормально открытый	Если эта клемма включается, частотный преобразователь
38	(NO) вход внешней	сообщает об ошибке Егг15 и выполняет защиту от сбоев.
	неисправности	Для подробностей см. описание bb-32.

Значение	Функция	Описание
	Нормально закрытый	После включения этой клеммы частотный
39	(NC) вход внешней	преобразователь сообщает об ошибке Err15 и выполняет
	ошибки	защиту от сбоев. Для подробностей см. описание bb-32.
40	Пользовательская	Если две этих клеммы включаются, частотный
40	ошибка 1	преобразователь сообщает об ошибках Err27 и Err28
41	Пользовательская	соответственно, и выполняет защиту от сбоев на основе
41	ошибка 2	настроек bb-34.
		Преобразователь частоты замедляется, но рабочие
		параметры, такие как ПЛК, частота колебаний и ПИД-
42	Пауза RUN	параметры, записываются. После отключения функции
		частотный преобразователь восстанавливает состояние,
		которое было до остановки.
		Преобразователь частоты блокирует выход, двигатель
43	Свободный останов	совершает свободную остановку и не управляется
43	Свооодный останов	преобразователем. Это то же самое, что и свободная
		остановка, описанная в b1-07.
	Аварийный останов	При включении данной клеммы частотный
		преобразователь останавливается как можно быстрее. Во
44		время процесса остановки ток остается на заданном
44		верхнем пределе. Эта функция используется для
		удовлетворения требований по остановке частотного
		преобразователя в аварийном состоянии.
		В режиме работы с клавиатурой данная клемма может
45	Внешняя клемма STOP 1	быть использована для остановки частотного
73	Breman Kiewika STOI I	преобразователя, она равна клавише STOP на панели
		управления.
		В любом режиме управления (панель управления,
46	Внешняя клемма STOP 2	клеммы или связь) она может быть использована для
70	Breman Kiewina 5101 2	замедления преобразователя частоты. В таком случае
		время торможения будет равно времени торможения 4.
	Замедление и	При включении этой клеммы преобразователь частоты
47	торможение	замедляется до начальной частоты торможения
47	постоянным током	постоянным током и переходит в режим торможения
	постоянным током	постоянным током.
	Срочное торможение	После включения этой клеммы частотный
48	постоянным током	преобразователь непосредственно переключится в режим
	постоянным током	торможения постоянным током.
		При включении данной клеммы время работы частотного
49	Очистить время работы	преобразователя обнуляется. Эта функция должна
		поддерживаться b2-28 and b2-31.

Четыре многофункциональных клеммы составляют 16 комбинаций, соответствуя 16 опорным значениям, как указано в следующей таблице.

К4	К3	K2	K1	Ссылочное значение	Соответствующий параметр
OFF	OFF	OFF	OFF	Значение 0	C1-00
OFF	OFF	OFF	ON	Значение 1	C1-01
OFF	OFF	ON	OFF	Значение 2	C1-02
OFF	OFF	ON	ON	Значение 3	C1-03
OFF	ON	OFF	OFF	Значение 4	C1-04
OFF	ON	OFF	ON	Значение 5	C1-05
OFF	ON	ON	OFF	Значение 6	C1-06
OFF	ON	ON	ON	Значение 7	C1-07
ON	OFF	OFF	OFF	Значение 8	C1-08
ON	OFF	OFF	ON	Значение 9	C1-09
ON	OFF	ON	OFF	Значение 10	C1-10
ON	OFF	ON	ON	Значение 11	C1-11
ON	ON	OFF	OFF	Значение 12	C1-12
ON	ON	OFF	ON	Значение 13	C1-13

K4	К3	K2	K1	Ссылочное значение	Соответствующий параметр
ON	ON	ON	OFF	Значение 14	C1-14
ON	ON	ON	ON	Значение 15	C1-15

Если источник частоты многофункционален, 100% значение С1-00...С1-15 соответствует значению b0-13 (Максимальная частота).

Кроме того, в качестве функции с несколькими скоростями, многофункциональный источник может быть использован в качестве источника настройки ПИД-регулирования или источника напряжения для разделения V/F, удовлетворяя разные потребности при переключении значений настройки.

Таблица 5-2 Описание функций клемм выбора времени разгона/торможения

Terminal 2	Terminal 1	Время разгона/торможения	Соотв. параметр		
OFF	OFF	Время разгона/торможения 1	b0-21, b0-22		
OFF	ON	Время разгона/торможения 2	b2-03, b2-04		
ON	OFF	Время разгона/торможения 3	b2-05, b2-06		
ON	ON	Время разгона/торможения 4	b2-07, b2-08		

Таблица 5-3 Описание функций клемм выбора двигателя

Клемма 1	Выбранный двигатель	Соотв. параметры
OFF	Двигатель 1	Группа d0, Группа d1, Группа d2
ON	Двигатель 2	Группа d3, Группа d4, Группа d5

Код	Название параметра	Диапазон настройки	По
			умолчанию
b3-12	Время фильтрации DI	0.000c1.000c	0.010c

Используется для установки времени фильтрации программного обеспечения для статуса клеммы DI. Если клеммы DI подвержены помехам и могут привести к неисправности, увеличьте значение данного параметра, чтобы повысить уровень защиты от помех. Тем не менее, увеличение времени фильтрации DI замедлит отклик клемм DI.

Код	Название параметра	Диапазон настройки	По
			умолчанию
		0: Двухпроводной 1	
b3-13	Режим управления запуском 1: Двухпроводной 2	0	
03-13	с клемм	2: Трехпроводной 1	U
		3: Трехпроводной 2	

Данный параметр используется для установки режима, в котором частотный преобразователь управляется с помощью внешних клемм. Ниже показаны примеры использования различных режимов при применении клемм DI1, DI2 и DI3 с использованием параметров b3-00 - b3-02...

0: Двухпроводной режим 1

Это наиболее часто используемый двухпроводной режим, в котором прямое/обратное вращение двигателя определяется с помощью DI1 и DI2. Параметры заданы следующим образом:

Код	Название	Значение	Описание функции
b3-13	Режим управления	0	Двухпроводной 1
b3-00	Выбор функции DI1	1	Прямое вращение (FWD)
b3-01	Выбор функции DI2	2	Обратный вращение (REV)

K1	K2	Направление
1	0	FWD
0	1	REV
0	0	STOP
1	1	STOP

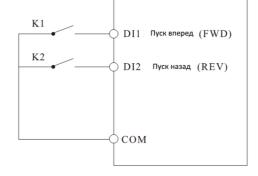


Рис. 5-10 Настройка двухпроводного режима 1

Как показано на предыдущем рисунке, когда только K1 работает, частотный преобразователь сообщает прямое вращение. Если только K2 работает, преобразователь сообщает обратное вращение. Если и K1, и K2 включены или выключены, преобразователь останавливается.

1: Двухпроводной режим 2

Код	Название	Значение	Описание функции
b3-13	Режим управления	1	Двухпроводной 2
b3-00	Выбор функции DI1	1	ЗАПУСК
b3-01	Выбор функции DI2	2	Определение направления вращения

K1	K2	Направление
1	0	FWD
1	1	REV
0	0	STOP
0	1	STOP

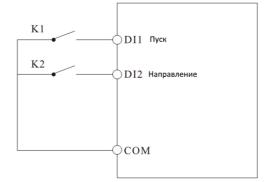


Рис. 5-11 Настройка двухпроводного режима 2

2: Трехпроводной режим 1

20Anon Ponnin 1					
Код	Название	Значение	Описание функции		
b3-13	Режим управления	2	Трехпроводной 1		
b3-00	Выбор функции DI1	1	Прямое вращение (FWD)		
b3-01	Выбор функции DI2	2	Обратное вращение (REV)		
b3-02	Выбор функции DI3	3	Three-line control		

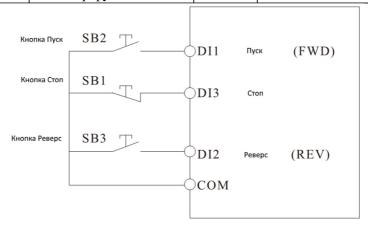


Рис. 5-12 Настройка трехпроводного режима 1

Как показано на предыдущем рисунке, если включен SB1, частотный преобразователь сообщает о прямом вращении, как только Sb2 нажат для включения, и выдает команду об обратном вращение, как только нажат для включения Sb3. Частотный преобразователь останавливается сразу же после того, как SB1 выключается. Во время обычного запуска и работы SB1 должен оставаться включенным. Рабочее состояние частотного преобразователя определяется последними действиями на SB1, SB2 и SB3. В этом режиме DI3 - это терминал с поддержкой RUN. Команда RUN задается DI1, а направление определяется DI2. Параметры задаются следующим образом:

Код	Название	Значение	Описание функции
b3-13	Режим управления	3	Трехпроводной 2
b3-00	Выбор функции DI1	1	ЗАПУСК
b3-01	Выбор функции DI2	2	Определение направления вращения

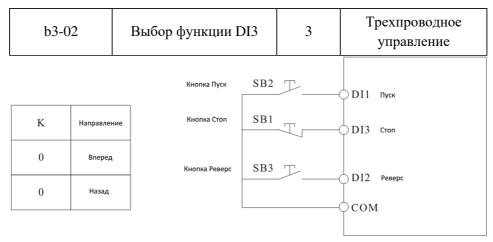


Рис. 5-13 Настройка трехпроводного режима 2

Как показано на предыдущем рисунке, если SB1 включен, частотный преобразователь начинает работать после включения SB2; частотный преобразователь сообщает прямое вращение, когда К отключен и сообщает обратное вращение, если К включен. Преобразователь частоты останавливается сразу после отключения SB1. При обычном запуске и работе SB1 должен оставаться включенным, а SB2 работает сразу после включения.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b3-14	Скорость клеммы UP/DOWN	0.001Гц/с65.535 Гц/с	1.000 Гц/с

Используется для регулировки быстроты изменения частоты, когда частота задается с помощью клеммы UP/ DOWN.

- 1. Если b0-11 (Значение частотного разрешения) равно 2, диапазон настройки 0.001Γ п/с...65.535 Γ п/с.
- 2. Если b0-11 (Значение частотного разрешения) равно 1, диапазон настройки 0.01Γ ц/с...655.35 Γ ц/с.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b3-15	Время задержки DI1 ON	0.0c3000.0c	0.0c
b3-16	Время задержки DI1 OFF	0.0c3000.0c	0.0c
b3-17	Время задержки DI2 ON	0.0c3000.0c	0.0c
b3-18	Время задержки DI2 OFF	0.0c3000.0c	0.0c
b3-19	Время задержки DI3 ON	0.0c3000.0c	0.0c
b3-20	Время задержки DI3 OFF	0.0c3000.0c	0.0c
b3-21	Время задержки DI4 ON	0.0c3000.0c	0.0c
b3-22	Время задержки DI4 OFF	0.0c3000.0c	0.0c
b3-23	Время задержки DI5 ON	0.0c3000.0c	0.0c
b3-24	Время задержки DI5 OFF	0.0c3000.0c	0.0c

Эти параметры используются для установки времени задержки частотного преобразователя при изменении состояния клемм DI.

Клеммы DI1 - DI5 поддерживают функцию времени задержки.

Код	Название параметра	Диапазон настройки	По
			умолчанию
		Бит единиц: полярность клеммы DI1.	
		0: Высокий уровень	
		1: Низкий уровень	
		Бит десятков: полярность клеммы DI2.	
b3-25	Выбор полярности клемм	0, 1 (то же, что и для DI1)	00000
03-23	DI-1	Бит сотен: полярность клеммы DI3.	00000
		0, 1 (то же, что и для DI1)	
		Бит тысяч: полярность клеммы DI4.	
		0, 1 (то же, что и для DI1)	
		Бит десятков тысяч: полярность клеммы	

		DI5.	
		0, 1 (то же, что и для DI1)	
		Бит единиц: полярность клеммы DI1.	
		0: Высокий уровень	
		1: Низкий уровень	
		Бит десятков: полярность клеммы DI2.	
	Выбор полярности клемм	0, 1 (то же, что и для DI1)	
b3-26		Бит сотен: полярность клеммы DI3.	00000
03-20	DI-2	0, 1 (то же, что и для DI1)	00000
		Бит тысяч: полярность клеммы DI4.	
		0, 1 (то же, что и для DI1)	
		Бит десятков тысяч: полярность клеммы	
		DI5.	
		0, 1 (то же, что и для DI1)	

Эти параметры используются для настройки полярности клемм DI.

0: Низкий уровень

Клемма DI недействительна при подключении к COM и действительна при отключении от COM.

1: Высокий уровень

Клемма DI действительна при подключении к COM и недействительна при отключении от COM.

5.5 Группа b4: Выходные клеммы

SL9 стандартно обеспечивает клемму аналогового выхода (AO), цифрового выхода (DO), две клеммы реле и клемму FM (используется для высокоскоростного импульсного выхода или выходного сигнала переключателя с открытым коллектором). Если данные выходные клеммы не удовлетворяют требования, используйте дополнительную плату расширения ввода-вывода.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-00	Выходной режим клеммы	0: Импульсный выход (FMP)	1
04-00	FM	1: Дискретный выход (FMR)	1

Клемма FM — это программируемая мультиплексирующая клемма. Она может использоваться для высокоскоростного импульсного выхода (FMP) с максимальной частотой 100.00 кГц. Для описания соответствующих функций FMP см. b6-00. Она также может использоваться в качестве дискретного выхода (FMR).

Код	Название параметра	По
		умолчанию
b4-01	Функция FMR (в режиме дискретного выхода)	0
b4-02	Функция реле 1 (TA1-TB1-TC1)	
b4-03	Функция реле 2 (TA2-TB2-TC2)	
b4-04	Выбор функции DO1 (транзисторный выход с открытым коллектором)	1
b4-05	Функция DO2 (расширение)	0

Эти параметры используются для выбора функций цифровых выходных клемм. ТА-ТВ-ТС и Р/А-Р/В-Р/С – это реле на плате управления и плате расширения соответственно.

Функции выходных клемм описаны в следующей таблице.

Значение	Функция	Описание
0	Нет выхода	Клемма не работает.
1	Клемма включается, если основная цепь часто преобразователя и схема управ стабилизируются, а преобразователь не обнаруж неисправности и готов к запуску.	
2	Частотный преобразователь работает	Клемма включается, когда преобразователь частоты работает и имеет выходную частоту (может быть равна 0).
3	Выход неисправности (свободный останов)	Когда преобразователь частоты останавливается изза ошибки, клемма включается.

Значение	Функция	Описание
4	Выход неисправности (свободный останов, отсутствие выхода при пониженном напряжении)	
5	Частота колебаний ограничена	Клемма включается , если заданная частота превышает верхний предел или нижний предел частоты, а выходная частота преобразователя достигает верхнего или нижнего предела.
6	Ограниченный крутящий момент	Клемма включается в режиме контроля скорости, если выходной крутящий момент достигает предела, преобразователь частоты переходит в состояние защиты от опрокидывания.
7	Достигнут верхний предел частоты	Клемма включается, если рабочая частота достигает верхнего предела.
8	Достигнут нижний предел частоты (нет выхода при остановке)	Клемма включается, если рабочая частота достигает нижнего предела. В состоянии останова клемма отключается.
9	Достигнут нижний предел частоты (с выходом при остановке)	Клемма включается, если рабочая частота достигает нижнего предела. В состоянии останова клемма продолжает работать.
10	Обратный ход	Клемма включается, если частотный преобразователь работает в режиме обратного хода.
11	Работа с нулевой скоростью (нет выхода при остановке)	Клемма включается, если преобразователь частоты работает с выходной частотой 0. Если преобразователь находится в состоянии останова, клемма отключается.
12	Работа с нулевой скоростью 2 (с выходом при остановке)	Клемма включается, если преобразователь частоты работает с выходной частотой 0. Если преобразователь находится в состоянии останова, клемма продолжает работать.
13	Достигнуто заданное значение счетчика	Клемма включается, когда значение счетчика достигает заданного в C3-08.
14	Достигнуто назначенное значение счетчика	Клемма включается, когда значение счетчика достигает заданного в C3-09.
15	Длина достигнута	Клемма включается, когда фактическая длина превышает значение, заданное в C3-05.
16	Цикл ПЛК завершен	Когда простой ПЛК завершает один цикл, клемма выдает импульсный сигнал шириной 250мс.
17	Вывод сигнала об обнаружении частоты уровня 1 (FDT1)	См. описание b4-22 и b4-23.
18	Вывод сигнала об обнаружении частоты уровня 2 (FDT2)	См. описание b4-24 и b4-25.
19	Достигнутая частота	См. описание b4-26.
20	Достигнутая частота 1	См. описание b4-27 и b4-28.
21	Достигнутая частота 2	См. описание b4-29 и b4-30.
22	Достигнутый ток 1	См. описание b4-35 и b4-36.
23	Достигнутый ток 2 Достигнутая температура модуля	См. описание b4-37 и b4-38. Клемма включается, если температура радиатора модуля инвертора (b9-07) достигает заданного порога температуры (b4-39).

Значение	Функция	Описание
25	Тайминг достигнут	Если функция тайминга (b2-28) действительна, клемма включается, когда рабочее время преобразователя достигает заданного значения.
26	Нулевой ток	См. описание b4-24 и b4-25.
27	Превышен предел выходного тока	См. описание b4-33 и b4-34.
28	Выход низкого напряжения	Клемма включается, если преобразователь частоты находится в состоянии низкого напряжения.
29	Предупреждение о перегрузке преобразователя	Частотный преобразователь определяет, превышает ли мощность двигателя порог предварительного предупреждения о перегрузке перед выполнением защитных действий. Если порог предупреждения превышен, клемма включается. Для параметров перегрузки двигателя см. описания bb-01 to bb-03.
30	Предупреждение о перегреве двигателя	Клемма включается, если температура двигателя достигает заданной в bb-27 (порог предупреждения о перегреве). Вы можете посмотреть температуру двигателя с помощью U0-33.
31	Предупреждение о перегрузке двигателя	Частотный преобразователь учитывает перегрузку двигателя в соответствии с заданным порогом перегрузки двигателя, а клемма включается. Установка порога перегрузки относится к bb-01bb-03.
32	Обрыв нагрузки	Клемма включается, если нагрузка равна 0.
33	AI1 больше AI2	Клемма включается, когда вход AI1 больше, чем вход AI2.
34	Превышен лимит входа AI1	Клемма включается, если вход AII больше, чем значение b5-06 (верхний предел входного напряжения AII) или ниже значения b5-05 (нижний предел входного напряжения AII)
35	Аварийный выход (все неисправности)	Клемма выдает аварийный сигнал, если на частотном преобразователе возникает неисправность, и преобразователь частоты продолжает работать.
36	Заданное время работы достигнуто	Клемма включается, если текущее время работы частотного преобразователя достигает значения b2-31.
37	Суммарное время включения достигнуто	Клемма включается, если суммарное время включения частотного преобразователя (b9-08) достигает значения, заданного в b2-20.
38	Суммарное время работы достигнуто	Клемма включается, если суммарное время работы частотного преобразователя достигает заданного в b2-21.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-10	Время задержки FMR ON	0.0c3000.0c	0.0c
b4-11	Время задержки FMR OFF	0.0c3000.0c	0.0c
b4-12	Время задержки Реле 1 ON	0.0c3000.0c	0.0c
b4-13	Время задержки Реле 1 OFF	0.0c3000.0c	0.0c
b4-14	Время задержки Реле 2 ON	0.0c3000.0c	0.0c
b4-15	Время задержки Реле 2 OFF	0.0c3000.0c	0.0c

Данные параметры используются для задержки срабатывания выходов

Код	Название параметра	Диапазон настройки	По
			умолчанию

b4-20	Выбор логики DO1	Бит единиц: действительный режим FMR 0: Положительная логика 1: Отрицательная логика Бит десяток: действительный режим Реле1:0, 1 (аналогично FMR) Бит сотен: действительный режим Реле 2: 0, 1 (аналогично FMR) Бит тысяч: действительный режим DO1: 0, 1 (аналогично FMR) Бит десяти тысяч: действительный режим	00000
		DO2: 0, 1 (аналогично FMR)	

Используется для установки выходных клемм FMR, реле, DO1 and DO2.

0: Положительная логика

Выходная клемма действительна при подключении к СОМ и недействительна при отключении.

1: Отрицательная логика

Выходная клемма недействительна при подключении к СОМ и действительна при отключении.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-22	Значение обнаружения частоты (FDT1)	0.00 Гц максимальная частота	50.00 Гц
b4-23	Гистерезис обнаружения частоты (FDT гистерезис 1)	0.0%100.0% (уровень FDT1)	5.0%

Если рабочая частота выше значения b4-22, включается соответствующая клемма DO. Если рабочая частота ниже значения b4-22, клемма DO отключается.

Эти два параметра соответственно используются для установки значения определения выходной частоты и значения гистерезиса при отмене выхода. Значение b4-23 представляет собой процентное отношение частоты гистерезиса к значению определения частоты (b4-22). Функция FDT показана на следующем рисунке.

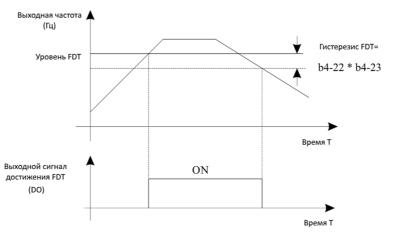


Рис. 5-14 уровень FDT

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-24	Значение обнаружения частоты (FDT2)	0.00Гцмаксимальная частота	50.00 Гц
b4-25	Гистерезис обнаружения частоты (FDT гистерезис 2)	0.0%100.0% (уровень FDT2)	5.0%

Функция определения частоты аналогична функции FDT1. Для дополнительной информации см. описание b4-22 и b4-23.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-26	Амплитуда обнаружения достигнутой частоты	0.00100% (максимальная частота)	3.0%

Если рабочая частота частотного преобразователя находится в определенном диапазоне заданной частоты, включается соответствующая клемма DO.

Данный параметр используется для установки диапазона, в пределах которого выходная частота отслеживается для достижения заданной частоты. Значение данного параметра представляет собой

процентное отношение относительно максимальной частоты. Диапазон определения достигнутой частоты показан на следующем рисунке.

Рис. 5-15 Диапазон обнаружения достигнутой частоты

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-27	Любая частота, достигающая значения обнаружения 1	0.00 Гц максимальная частота	50.00 Гц
b4-28	Любая частота, достигающая амплитуды обнаружения 1	0.0%100.0% (максимальная частота)	3.0%
b4-29	Любая частота, достигающая значения обнаружения 2	0.00 Гц максимальная частота	50.00 Гц
b4-30	Любая частота, достигающая амплитуды обнаружения 2	0.0%100.0% (максимальная частота)	3.0%

Если выходная частота частотного преобразователя находится в пределах положительной и отрицательной амплитуд любой частоты, достигающей значения обнаружения, включается соответствующая клемма DO.

SL9 предоставляет две группы параметров определения достижения любой частоты, включая значение определения частоты и амплитуду обнаружения, как показано на рисунке.

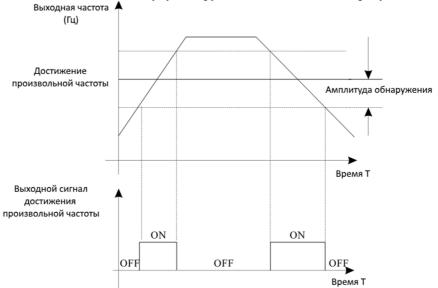


Рис. 5-16 Обнаружение любой частоты

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-31	Уровень обнаружения	0.0%100.0% (номинальный ток	5.0%

	нулевого тока	двигателя)	
b4-32	Время задержки	0.00c600.00c	0.10c
04 32	обнаружения нулевого тока	0.00000	0.100

Если выходной ток частотного преобразователя равен или меньше уровня обнаружения нулевого тока, а длительность превышает время задержки обнаружения нулевого тока, включается соответствующая клемма DO. Обнаружение нулевого тока показано на следующем рисунке.

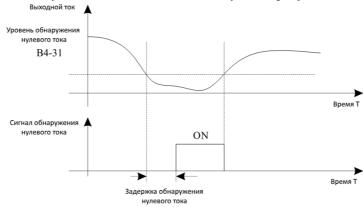


Рис. 5-17 Обнаружение нулевого тока

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-33	Превышение выходного	0.0%300.0% (номинальный ток	200.0%
0133	тока	двигателя)	200.070
	Время задержки		
b4-34	обнаружения превышения	0.00c600.00c	0.10c
	выходного тока		

Если выходной ток частотного преобразователя равен или больше порогового значения перегрузки по току, включается соответствующая клемма DO. Функция обнаружения превышения выходного тока показана на следующем рисунке.

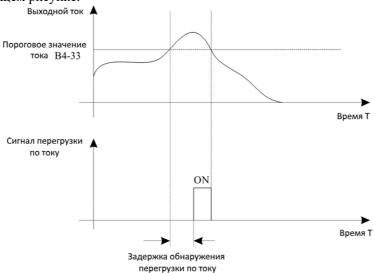


Рис. 5-18 обнаружения превышения выходного тока

Код	Название парамера	Диапазон настройки	По
			умолчанию
b4-35	Любой достигнутый ток 1	0.0%100.0% (номинальный ток	100.0%
04-33	любой достигнутый ток т	двигателя)	100.070
b4-36	Амплитуда любого	0.0%100.0% (номинальный ток	3.0%
04-30	достигнутого тока 1	двигателя)	3.0%
b4-37	Любой достигнутый ток 2	0.0%100.0% (номинальный ток	100.0%
04-37	люоой достигнутый ток 2	двигателя)	100.0%
L4 20	Амплитуда любого	0.0%100.0% (номинальный ток	2.00/
b4-38	достигнутого тока 2	двигателя)	3.0%

Если выходной ток преобразователя находится в пределах положительной и отрицательной амплитуд любого значения достигнутого тока, включается соответствующая клемма DO.

SL9 обеспечивает две группы параметров обнаружения достигнутого тока, включая значение обнаружения тока и амплитуду обнаружения, как показано на рисунке.

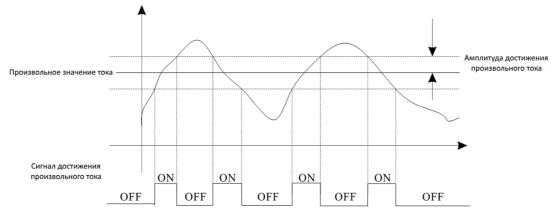


Рис. 5-19 Обнаружение достигнутого тока

Код	Название параметра	Диапазон настройки	По
			умолчанию
b4-39	Порог температуры модуля	25100°C	75°C

Когда температура радиатора преобразователя достигает значения данного параметра, включается соответствующая клемма DO, сообщая, что температура модуля IGBT достигает порогового значения.

5.6 Группа b5: Импульсные/Аналоговые входные клеммы

b5-00	Минимальный входная частота импульсного входа (HDI)		По умолчанию	0.00 кГц
	Диапазон настройки	0.00 кГцb5-02		
b5-01		овка минимального входного ачения	По умолчанию	0.00%
	Диапазон настройки	-100.00%100.0%		
b5-02		частота импульсного входа	По умолчанию	50.00 кГц
	Диапазон настройки	b5-00 50.00 кГц		
b5-03		становка максимального го значения	По умолчанию	100.0%
	Диапазон настройки	-100.00%100.0%		
b5-04	Время фильтраці	ии испульсного входа	По умолчанию	0.10c
	Диапазон настройки	0.00c10.00c		

Может вводиться только с помощью HDI. Метод установки данной функции аналогичен методу установки функции AII.

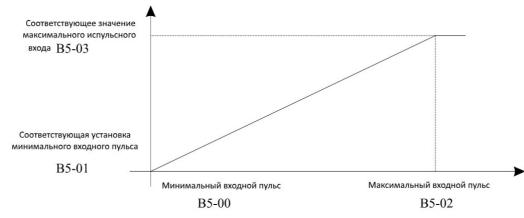
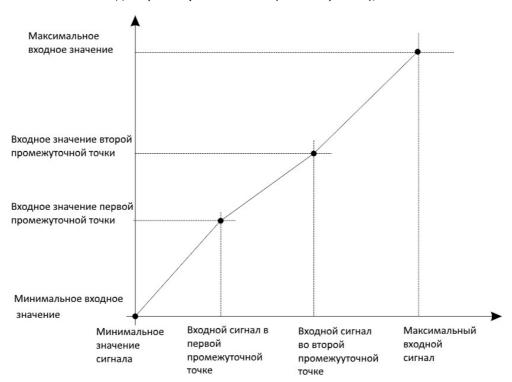


Рис. 5-20 Связь между импульсным входом и значением настройки

b5-05	Низкий уровень вх	одного напряжения AI1	По	3.10 B
			умолчанию	
	Диапазон настройки	0.00 B b5-06		
b5-06	Верхний уровень входного напряжения AI1		По умолчанию	6.80 B
	Диапазон настройки	b5-0510.00 B		

Эти два параметра используются для установки пределов входного напряжения для обеспечения защиты частотного преобразователя. Когда вход AI1 больше значения b5-06 или меньше значения b5-05, включается соответствующая клемма, указывая, что вход AI1 достигает предел.


b5-07	Минимальное значение с	игнала на входе AI1	По умолчанию	0.02 B
	Диапазон настройки	0.00 B b5-15	y MOST RETITIO	
b5-08	Соответствующая входно	ое значение AI1	По умолчанию	0.0%
	Диапазон настройки	-100.00%100.0%		
b5-09	Максимальное значение	сигнала на входе AI1	По умолчанию	10.00B
	Диапазон настройки	0.00 B10.00 B		
b5-10	Соответствующая входно	ое значения AI1	По умолчанию	100.0%
	Диапазон настройки	-100.00%100.0%		
b5-11	Время фильтрации входа	AI1	По умолчанию	0.10c
	Диапазон настройки	0.00c10.00c		
b5-12	Минимальное значение с	игнала на входе AI2	По умолчанию	0.00B
	Диапазон настройки	0.00 B10.00 B		
b5-13	Соответствующая входно	ое значение AI2	По умолчанию	0.0%
	Диапазон настройки	-100.00%100.0%		
b5-14	Максимальное значение	сигнала на входе AI2	По умолчанию	10.00B
	Диапазон настройки	0.00 B10.00 B		
b5-15	Соответствующая входно	ое значение AI2	По умолчанию	100%
	Диапазон настройки	-100.00%100.0%		
b5-16	Время фильтрации входа	AI2	По умолчанию	0.10c
	Диапазон настройки	0.00c10.00c	<u> </u>	
b5-17	Минимальное значение с	игнала на входе AI3	По умолчанию	-10.00B
	Диапазон настройки	-10.00 B10.00 B	j mon minio	I
		61		

b5-18	Соответствующая входное значение AI3	По	0.0%
		умолчанию	
	Диапазон настройки -100.00%100.0%		
b5-19	Максимальное значение сигнала на входе AI3	По	10.00B
		умолчанию	
	Диапазон настройки 0.00 В10.00 В		
b5-20	Соответствующая входное значение АІЗ	По	100.0%
		умолчанию	200.070
	Диапазон настройки -100.00%100.0%		
b5-21	Время фильтрации входа AI3	По	0.10c
		умолчанию	
	Диапазон настройки 0.00с10.00с		

Эти параметры используются для определения отношения между аналоговым входным напряжением и соответствующим значением настройки.

b5-17 (время фильтрации AI1) используется для установки программного времени фильтрации AI1. Если аналоговый вход подвержен помехам, увеличьте значение данного параметра для стабилизации определенного аналогового входа. Однако увеличение времени фильтрации AI замедлит реакцию аналогового обнаружения. Правильная установка данного параметра основана на фактических условиях.

В разных применениях 100% аналогового входа могут соответствовать разным физическим значениям. Зависимость входного сигнала и соответствующего входного значения аналоговых входов может задаваться кривыми по 2 или по 4 точкам (минимальное значение, максимальное значение и две промежуточных точки (точки перегиба)).

b5-22	Минимальное значение кривой 4 входа AI	По умолчанию	0.00B
	Диапазон настройки -10.00Вb5-24		
b5-23	Соответствующая настройка минимального значения кривой 4 входа AI	По умолчанию	0.0%
	Диапазон настройки -100.00%100.0%		•

b5-24	Входное значение кривой 4 АІ в точке перегиба 1	По умолчанию	3.00B
	Диапазон настройки b5-21b5-26		
b5-25	Соответствующая настройка кривой 4 Al в точке перегиба 1	По умолчанию	30.0%
	Диапазон настройки -100.00%100.0%		
b5-26	Входное значение кривой 4 AI в точке перегиба 2	По умолчанию	6.00B
	Диапазон настройки b5-23b5-27		
b5-27	Соответствующая настройка кривой 4 AI в точке перегиба 2	По умолчанию	60.0%
	Диапазон настройки -100.00%100.0%	_ 	
b5-28	Максимальное значение кривой 4 входа AI	По умолчанию	10.00V
	Диапазон настройки b5-27+10.00B		
b5-29	Соответствующая настройка максимального значения кривой 4 входа AI	По умолчанию	100.0%
	Диапазон настройки -100.00%100.0%		
b5-30	Минимальное значение кривой 5 входа AI	По умолчанию	-10.00B
	Диапазон настройки -10.00Вb5-31		
b5-31	Соответствующая настройка минимального значения кривой 5 входа AI	По умолчанию	-100.0%
	Диапазон настройки -100.00%100.0%		
b5-32	Входное значение кривой 5 АІ в точке перегиба 1	По умолчанию	-3.00B
	Диапазон настройки b5-28b5-33	1 2	
b5-33	Соответствующая настройка кривой 5 AI в точке перегиба 1	По умолчанию	-30.0%
	Диапазон настройки -100.00%100.0%		
b5-34	Входное значение кривой 5 АІ в точке перегиба 2	По умолчанию	3.00B
	Диапазон настройки b5-31b5-35		
b5-35	Соответствующая настройка кривой 5 Al в точке перегиба 2	По умолчанию	30.0%
	Диапазон настройки -100.00%100.0%		
b5-36	Максимальное значение кривой 5 входа AI	По умолчанию	10.00B

	Диапазон на	стройки	b5-33+10.00B		
b5-37	Соответствую	щая настр	оойка максимального значения	По	100.0%
	кривой 5 вход	a AI		умолчанию	
	Диапазон на	стройки	-100.00%100.0%		
b5-38	Точка переко	са на наст	 гройке входа AI1	По	0.0%
	Диапазон на	стройки	-100.00%100.0%	умолчанию	
b5-39	Амплитуда пе	рекоса н	 а настройке входа AI1	По	0.5%
	Диапазон на	стройки	0%100.0%	умолчанию	
	Дианазон на	отронки	070100.070		
b5-40	Точка переко	са на наст	гройке входа AI2	По умолчанию	0.0%
	Диапазон на	стройки	-100.00%100.0%		l
b5-41	Амплитуда пе	рекоса н	а настройке входа AI2	По	0.5%
	Диапазон на	стройки	0%100.0%	умолчанию	
b5-42	Точка переко	са на наст	 гройке входа AI3	По	0.0%
	Диапазон на	стройки	-100.00%100.0%	умолчанию	
b5-43	Амплитуда пе	рекоса н	 а настройке входа Al3	По	0.5%
	Диапазон на	стройки	0%100.0%	умолчанию	
					T
	Выбор кривой	ί ΑΙ 		По умолчанию	H321
		Бит еди	ит единиц: Выбор кривой Al.		
		1	кривая 1 (точка 2, относител	ьно b5-07b5-10))
		2	кривая 2 (точка 2, относител	ьно b5-12b5-15	5)
b5-44	Диапазон	3	кривая 3 (точка 2, относительно b5-17b5-20)))
	настройки	4	кривая 4 (точка 4, относительно b5-22b5-29)		
		5	кривая 5 (точка 4, относителя	ьно b5-30b5-37	7)
		Бит дес	 сятков: Выбор кривой А2. Настр	оойки такие же,	как и
		выше. Бит сот	ен: Выбор кривой АЗ. Настрой	ки такие же. как	и выше.
			i i i	·	T
b5-45	АІ ниже миним	іального в	выбора настроек входа	По умолчанию	H.000
	Диапазон	Бит еди	иниц: AI1 ниже минимальных на	строек входа	
	настройки	0	соответствующая минимальна	ая настройка вхо	ода
		1	0.0%		
	1				

	Бит десятков: AI2 ниже минимальных настроек входа. Настройки такиеже, как и выше.
	Бит сотен: Al3 ниже минимальных настроек входа. Настройки такие же,как и выше.

Клеммы AI~(AI1~to~AI3)~SL9~ поддерживают функцию переключения параметров, которая фиксирует соответствующую настройку входа AI~ в точке перескока, когда перескок совершается в заданном диапазоне.

Например:

Колебания входного напряжения AI1 на уровне 5.00В, а амплитудный диапазон равен 4.90В...5.10В. Минимальный вход AI1 0.00В соответствует 0.00%, а максимальный вход 10.00В соответствует 100.0%. Соответствующая настройка определенного входа AI1 колеблется между 49.0% и 51.0%.

Если Вы установите точку перескока b5-18 как 50.0% и амплитуду b5-19 как 1.0%, частотный преобразователь с настроенным соответственно входом AI1 будет установлен на 50.0%, устраняя флуктуационный эффект.

5.7 Группа b6: Импульсные/Аналоговые выходные клеммы

Код	Название параметра	По
		умолчанию
b6-00	Выбор функции FMP	0
b6-01	Выбор функции выхода АО1	0
b6-02	Выбор функции выхода АО2	1

Частота выходного импульса клеммы FMP составляет от $0.01~\mathrm{k}\Gamma\mathrm{u}$ до «Максимальная выходная частота FMP» (b6-03). Значение b6-03 составляет от $0.01~\mathrm{k}\Gamma\mathrm{u}$ до $50.00~\mathrm{k}\Gamma\mathrm{u}$.

Выходной диапазон AO1 равен 0 В...10 В или 0мА...20мА. Выходной диапазон AO2 равен 0...10 В. Связь между диапазонами импульса и аналогового выхода и соответствующими функциями привелена в следующей таблице.

•	оиведена в следующей таблице. Диапазон (Соответствует диапазону импульсного или				
Значение	Функция	аналогового выхода 0.0%100.0%)			
0	Рабочая частота	0Гц максимальная выходная частота			
1	Установленная	OF WAY AND THE PLANT WAS THE PLANT OF THE PL			
1	частота	0Гц максимальная выходная частота			
2	Выходной ток	02х от номинального тока двигателя			
	Выходной				
3	крутящий момент	0 2х от номинального крутящего момента двигателя			
3	(абсолютное	(абсолютное значение крутящего момента)			
	значение)				
4	Выходная	0 2х от номинальной мощности			
4	мощность	0 2х от номинальной мощности			
5	Выходное	0 1.2x от номинального напряжения на шине DC			
3	напряжение	частотного преобразователя			
6	Скорость вращения	0скорость вращения, соответствующая максимальной			
0	двигателя	выходной частоте			
7	Выходной ток	0.0A1000.0 A			
8	Выходное	0.0B000.0 B			
0	напряжение	0.0D000.0 D			
	Выходной				
9	крутящий момент	-200% номинального крутящего момента двигателя 200%			
<i>J</i>	(действительное	номинального крутящего момента двигателя			
	значение)				
10	Импульсный вход	0.01 кГц100.00 кГц			

Значение	Функция	Диапазон (Соответствует диапазону импульсного или аналогового выхода 0.0%100.0%)
11	AI1	0 B10 B
12	AI2	0 B10 B
13	AI3	0 B10 B
16	Настройка связи	032767

Код	Название параметра	Диапазон настройки	По
			умолчанию
b6-03	Максимальная выходная частота FMP	0.01 кГц100.00 кГц	50.00 кГц

Если клемма FM используется для импульсного выхода, данный параметр используется для установки

максимальной частоты импульсного выхода.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b6-04	Коэффициент смещения AO1	-100.0%100.0%	0.0%
b6-05	Усиление АО1	-10.0010.00	1.00
b6-06	Коэффициент смещения AO2	-100.0%100.0%	0.00%
b6-07	Усиление АО2	-10.0010.00	1.00

Эти параметры используются для корректировки аналогового выхода и амплитуды отклонения. Они также могут использоваться для определения необходимой кривой AO. Если "b" - нулевое смещение, "k" - коэффициент усиления, "Y" - действительный выход, а "X" - стандартный выход, то действительный выход равен: Y = kX + b.

Коэффициент смещения нуля 100% от AO1 и AO2 соответствует 10~B (или 20~мA). Стандартный выход относится к значению, соответствующему аналоговому выходу от 0~до~10~B (или от 0~до~20~мA) без коррекции нуля или регулировки усиления.

Например, если аналоговый выход используется как рабочая частота, и ожидается, что выход равен 8 В, когда частота равна 0, и 3 В при максимальной частоте, коэффициент усиления будет задан как - 0.50, а смещение нуля должно быть равно 80%.

5.8 Группа b7: Клеммы виртуального цифрового входа

(VDI)/цифрового выхода (VDO)

Код	Название параметра	Диапазон настройки	По
			умолчанию
b7-00	Выбор функции VDI1	049	0
b7-01	Выбор функции VDI2	049	0
b7-02	Выбор функции VDI3	049	0
b7-03	Выбор функции VDI4	049	0
b7-04	Выбор функции VDI5	049	0

VDI1... VDI5 имеют на плате управления те же функции, что клеммы DI и могут использоваться для

цифрового входа. Для подробной информации см. описание b3-00 ... b3-11.

Код	Название параметра	Диапазон настройки	По
			умолчанию
		Бит единиц: VDI1.	
		0: Действителен по состоянию VDOx	
		1: Действителен по b7-06	
		Бит десятков: VDI2.	
	Dayres , and a	0, 1 (аналогично VDI1)	
b7-05	Режим настройки состояния VDI VDI о, 7 (апалети не VDI3.	Бит сотен: VDI3.	00000
	VDI	0, 1 (аналогично VDI1)	
		Бит тысяч: VDI4.	
		0, 1 (аналогично VDI1)	
		Бит десятков тысяч: VDI5.	
		0, 1 (аналогично VDI1)	
b7-06	Настройка состояния VDI	Бит единиц: VDI1.	00000

Код	Название параметра	Диапазон настройки	По
			умолчанию
		0: Недействителен	
		1: Действителен	
		Бит десятков: VDI2	
		0, 1 (аналогично VDI1)	
		Бит сотен: VDI3	
		0, 1 (аналогично VDI1)	
		Бит тысяч: VDI4	
		0, 1 (аналогично VDI1)	
		Бит десятков тысяч: VDI5.	
		0, 1 (аналогично VDI1)	

В отличие от клемм DI, состояние VDI может быть задано в двух режимах, выбранных в b7-05:

• Пример 1: определяется по состоянию VDOx

То, является ли VDI действительным, определяется состоянием соответствующего VDO. VDI х однозначно связан с VDO х (х один из 1...5). Например, чтобы реализовать функцию сообщения о тревоге или остановку, когда вход AII превышает предел, выполните следующую настройку:

- 1. Установите VDI1 с функцией 44 «Пользовательская ошибка 1» (b7-00 = 44).
- 2. Работа клеммы VDI1 определяется состоянием VDO1 (b7-05= xxx0).
- 3. Установите функцию «Превышение входного сигнала AI1» для VDO1 (b7-11 = 31).

Когда вход AI1 превышает предел, включается VDO1. В этот момент включается VDI1, и частотный преобразователь получает сообщение об определенной ошибке 1. Тогда преобразователь сообщает об ошибке Err27 и останавливается.

• Пример 2: определяется b7-06

Состояние VDI определяется b7-06. Например, для реализации функции, при которой частотный преобразователь автоматически переходит в рабочее состояние после включения питания, выполните следующую настройку:

- 1. Задайте для VDI1 функцию «Прямой пуск» (b7-00 = 1).
- 2. Задайте b7-05 в xxx1: Состояние VDI1 определяется b7-06.
- 3. Задайте b7-06 для xxx1: VDI1 действителен.
- 4. Задайте b0-02 для 1: источник команд для управления клеммами.
- 5. Задайте b2-32 для 0: Защита при запуске не включена.

Когда частотный преобразователь завершает инициализацию после включения питания, он определяет, что VDI1 действителен и VDI1 задается функцией прямого Пуска. То есть частотный преобразователь принимает команду прямого Пуска с клеммы и начинает работу в прямом направлении.

Код	Название параметра	Диапазон настройки	По
			умолчанию
b7-07	Выбор функции AI1,	049	0
	используемой в качестве DI	049	0
b7-08	Выбор функции AI2,	0 40	0
	используемой в качестве DI	049	
b7-09	Выбор функции AI3,	0 40	0
	используемой в качестве DI	049	
		Бит единиц: AI1.	
b7-10		0: Действует высокий уровень	
	Выбор действительного	1: Действует низкий уровень	
	состояния для АІ,	Бит десятков: AI2.	0
	используемой в качестве DI	0, 1 (то же, что для бита единиц)	
		Бит сотен: AI3.	
		0, 1 (то же, что для бита единиц)	

Функции этих параметров – использовать AI в качестве DI. При использовании AI в качестве DI для AI действует высокий уровень, если входное напряжение составляет 7 В и выше, и низкий уровень, если входное напряжение составляет 3 В и ниже.

Если входное напряжение AI находится между 3 и 7 В, состояние AI представляет собой гистерезис. Тогда b7-10 используется для определения низкого или высокого действующего уровня при использовании AI в качестве DI.

Настройка функции AI (используется как DI) аналогична DI. Подробнее см. описание настройки DI.

На следующем рисунке входное напряжение AI представлено в качестве примера для описания взаимосвязи между входным напряжением AI и соответствующим состоянием DI.

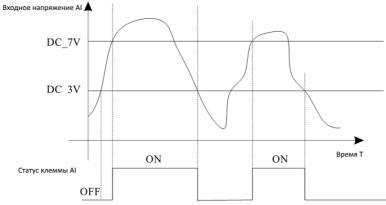


Рис. 6-22 Взаимовязь входного напряжения AI и соответствующего состояния DI

Код	Название параметра	Диапазон настройки	По
			умолчанию
b7-11	Выбор функции VDO1	0: внутренняя связь с физическим DIx 140	38
b7-12	Выбор функции VDO2	0: внутренняя связь с физическим DIx 140	38
b7-13	Выбор функции VDO3	0: внутренняя связь с физическим DIx 140	38
b7-14	Выбор функции VDO4	0: внутренняя связь с физическим DIx 140	38
b7-15	Выбор функции VDO5	0: внутренняя связь с физическим DIx 140	38
b7-16	Задержка выхода VDO1	0.0c3000.0c	0.0s
b7-17	Задержка выхода VDO2	0.0c3000.0c	0.0s
b7-18	Задержка выхода VDO3	0.0c3000.0c	0.0s
b7-19	Задержка выхода VDO4	0.0c3000.0c	0.0s
b7-20	Задержка выхода VDO5	0.0c3000.0c	0.0s
b7-21	Выбор действительного состояния VDO	Бит единиц: VDO1. 0: Действует позитивная логика 1: Действует обратная логика Бит десятков: VDO2 0, 1 (то же, что для бита единиц) Бит сотен: VDO3. 0, 1 (то же, что для бита единиц) Бит тысяч: VDO4. 0, 1 (то же, что для бита единиц) Бит десятков тысяч: VDO5. 0, 1 (то же, что для бита единиц)	00000

Функции VDO аналогичны функциям DO на панели управления. VDO может использоваться совместно с VDI х для реализации простого логического управления.

- Если функция VDO задана как 0, состояние VDO1 VDO5 определяется состоянием DI1 DI5 на панели управления. В данном случае VDOx и Dix находятся в отношении один к одному.
- Если функция VDO задана как не 0, настройка функции и использование VDOх аналогичны DO в группе b4.

Состояние VDOх может быть задано с помощью b7-21. Для справки ознакомьтесь с примерами приложений с использованием VDIх и VDOх.

5.9 Группа b8: Коррекция AI/AO

b8-00	Идеальное напряжение AI1 калибровка 1		По умолч.	2.000B
	Диапазон	0.500~4.000 B		
b8-01	Напряжение опросаAI1 калибровка 1		По умолч.	2.000B

	Диапазон	0.500~4.000 B		_
b8-02	Идеальное напря	жение AI1 калибровка 2	По умолч.	8.000B
50-02	Диапазон	6.000~9.999 B	умолч.	1
b8-03	Напряжение опро	осаAl1 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B	По	
b8-04	Идеальное напря	жение AI2 калибровка 1	По умолч.	2.000B
	Диапазон	0.500~4.000 B		1
b8-05		осаAI2 калибровка 1	По умолч.	2.000B
	Диапазон	0.500~4.000 B	По	
b8-06	Идеальное напря	жение AI2 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B		1
b8-07		осаAI2 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B	По	
b8-08	Идеальное напря	жение AI3 калибровка 1	110 умолч.	2.000B
	Диапазон	0.500~4.000 B		
b8-09	Напряжение опро	осаАІЗ калибровка 1	По умолч.	2.000B
	Диапазон	0.500~4.000 B		T
b8-10		жение AI3 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B	По	
b8-11	Напряжение опро	осаАІЗ калибровка 2 	умолч.	8.000B
	Диапазон	6.000~9.999 B		T
b8-12		жение АО1 калибровка 1	По умолч.	2.000B
	Диапазон	0.500~4.000 B	По	
b8-13	Измеренное напр	яжениеAO1 калибровка 1	умолч.	2.000B
	Диапазон	0.500~4.000 B		1
b8-14		жение АО1 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B	По	
b8-15	Измеренное напр	яжениеАО1калибровка 2	умолч.	8.000B
	Диапазон	6.000~9.999 B		1
b8-16		жение АО2 калибровка 1	По умолч.	2.000B
	Диапазон	0.500~4.000 B	По	I
b8-17		яжениеAO2 калибровка 1	умолч.	2.000B
	Диапазон	0.500~4.000 B	По	1
b8-18	Идеальное напряжение АО2 калибровка 2		По умолч.	8.000B
	Диапазон	6.000~9.999 B		E
b8-19	Измеренное напр	яжениеAO2 калибровка 2	По умолч.	8.000B
	Диапазон	6.000~9.999 B		

5.10 Группа b9: Клавиатура и Дисплей

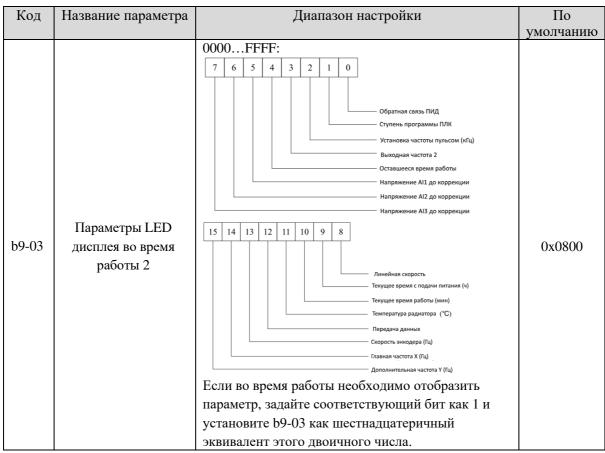
Код	Название параметра	Диапазон настройки	По
			умолчанию
b9-00	Кнопка STOP/RESET	0: Кнопка STOP/RESET включается	0
07-00	KHOIIKA STOT/KESET	только при управлении панелью	U

Код	Название параметра	Диапазон настройки	По
			умолчанию
		управления	
		1: Кнопка STOP/RESET включается при	
		любом режиме управления	
		0: Кнопка МҒ.К отключена	
		1: Переключение между управлением с	
		панели и дистанционным управлением	
b9-01	Выбор функций МҒ.К	(клеммы или порт)	2
09-01		2: Переключение между прямым и	3
		обратным вращением	
		3: Прямой JOG	
		4: Обратный JOG	

Кнопка MF.К относится к многофункциональным кнопкам. Вы можете настроить функцию MF.К, используя данный параметр. Вы можете выполнить переключение, используя этот ключ как в состоянии останова, так и во время работы.

0: Кнопка МҒ.К отключена

1: Переключение между управлением с панели и дистанционным управлением (клемма или порт) Вы можете выполнить переключение с текущего источника команд на управление с панели (локальная операция). Если текущий источник команд – панель управления, ключ недействителен.


2: Переключение между прямым и обратным вращением

Вы можете изменять направление работы частотного преобразователя, используя кнопку МГ.К. Она действует, когда текущий источник команд – панель управления.

3: Прямой ЈОС

4: Обратный ЈОС

Код	Название параметра	Диапазон настройки	По
			умолчанию
b9-02	Параметры LED дисплея во время работы 1	00000FFFF: 7	001f

Данные два параметра используются для настройки параметров мониторинга, которые можно просмотреть во время работы частотного преобразователя. Вы можете просмотреть до 32 рабочих

состояний. Информация отображается в последовательности от меньшего бита b9-02. Название Код Диапазон настройки По параметра умолчанию 0000...FFFF: 7 6 5 4 3 2 1 0 — Напряжение DC (B) Статус клемм DI НАпряжение AI2 (B) Параметры LED 15 | 14 | 13 | 12 | 11 | 10 | b9-04 дисплея во время 0x2033 остановки — Ступень ПЛК Уставка ПИД — Температура радиатора (°C) Если во время работы необходимо отобразить параметр, задайте соответствующий бит как 1 и установите b9-04 как шестнадцатеричный эквивалент этого двоичного числа.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
b9-05	Коэффициент отображения	0.0001 6.5000	1.0000

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	скорости загрузки		

Данный параметр используется для настройки отношения между выходной частотой преобразователя и скоростью загрузки. Подробнее см. описание b9-06.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Количество	0: 0 десятичный дисплей	
b9-06	десятичных знаков	1: 1 десятичный дисплей	1
09-00	для отображения	2: 2 десятичный дисплей	1
	скорости загрузки	3: 3 десятичный дисплей	

b9-06 используется для установки количества десятичных знаков для отображения скорости загрузки. Ниже приведен пример, чтобы объяснить, как рассчитать скорость загрузки:

Предположим, что b9-05 (Коэффициент отображения скорости загрузки) равен 2.000, а b9-06 равен 2 (2 десятичных знака). Когда рабочая частота преобразователя равна $40.00 \, \Gamma$ ц, скорость загрузки равна $40.00 \, x \, 2.000 = 80.00$ (отображение 2 десятичных знаков).

Если частотный преобразователь находится в состоянии останова, скорость загрузки — это скорость, соответствующая заданной частоте, а именно «заданная скорость загрузки». Если заданная частота равна $50.00 \, \Gamma$ ц, скорость загрузки в состоянии останова равна $50.00 \, x \, 2.000 = 100.00$ (отображение 2 десятичных знаков).

Код	Название	Диапазон настройки	По
	параметра		умолчанию
b9-07	Температура радиатора	0.0°C100.0°C	

Используется для отображения температуры радиатора.

У разных моделей преобразователей задано разное значение температуры для защиты от перегрева.

_	<u> </u>			
I	Код	Название	Диапазон настройки	По
		параметра		умолчанию
	b9-08	Суммарное время работы питания	065535 ч	-

Используется для отображения суммарного времени работы питания частотного преобразователя с момента поставки. Если время достигает установленного времени работы питания (b2-21), включается клемма с функцией 24 цифрового выхода.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
b9-09	Суммарное время работы	065535 ч	-

Используется для отображения суммарного времени работы частотного преобразователя. После достижения значения, заданного в b2-21, включается клемма с функцией 12 цифрового выхода.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
b9-10	Суммарное энергопотребление	065535 кВт/ч	-

Используется для отображения суммарного энергопотребления частотного преобразователя до данного момента.

5.11 Группа bA: Параметры связи

-		1 / 1	1	
	Код	Название	Диапазон настройки	По
		параметра		умолчанию
	bA- 00	Выбор типа связи	0: Протокол Modbus	0

На данный момент SL9 поддерживает Modbus, а позже добавит такие протоколы связи как PROFIBUS-DP и CANopen. Подробнее см. описание «Протокол связи SL9»

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bA- 01	Настройка отношения передачи	Бит единиц: Коэффициент передачи по Modbus. 0: 300 BPS 1: 600 BPS 2: 1200 BPS	5

Код	Название	Диапазон настройки	По
	параметра		умолчанию
		3: 2400 BPS	
		4: 4800 BPS	
		5: 9600 BPS	
		6: 19200 BPS	
		7: 38400 BPS	

Данный параметр используется для настройки скорости передачи данных с главного компьютера на частотный преобразователь. Обратите внимание, что скорость передачи данных на компьютере и на частотном преобразователе должны соответствовать. В противном случае, соединение невозможно.

Чем выше скорость передачи данных, тем быстрее соединение.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
		0: Без проверки, формат данных <8,N,2>	
		1: Контроль честности, формат данных <8,Е,1>	
bA-	Формат данных	2: Нечетный контроль честности, формат данных	0
02	Modbus	<8,0,1>	0
		3: Без проверки, формат данных <8,N,1>	
		Действительно для Modbus	

Главный компьютер и формат данных преобразователя соответствуют. В противном случае, соединение невозможно.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bA-	Широкая передача	1249 (0: адрес широкой передачи) Действительно	0
03	(broadcast)	для Modbus	U

Если для локального адреса задано значение 0, адрес широкой передачи, функция широкой передачи с главного компьютера может быть осуществлена.

Адрес уникален; это основа прямой связи между главным компьютером и частотным

преобразователем.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bA- 04	Задержка отклика Modbus	020 мс (Действительно только для Modbus)	2 мс

Задержка отклика: относится к интервалу времени между моментом, когда преобразователь завершает получение информации, и моментом, когда он отправляет ответные данные обратно на главный компьютер. Если время задержки отклика меньше времени обработки информации системой, время отклика основывается на времени обработки информации системой. Если время задержки отклика больше времени обработки информации системой, то после того, как система обработает информацию, работу следует отложить и дождаться достижения времени задержки отклика, а после этого отправить ответную информацию на главный компьютер.

ŀ	Код	Название	Диапазон настройки	По
		параметра		умолчанию
	oA- 05	Приостановка соединения	0.0c: недействительно 0.1c60.0c Действительно для Modbus	0.0c

Если этот параметр задан как 0.0с, функция приостановки соединения недействительна.

Когда функциональный код задан как значение, если временной интервал между данным и следующим соединением превышает заданный, система сообщит об ошибке соединения (Err16). При нормальном применении параметр будет задан как недействительный. При системе непрерывной

связи Вы сможете отслеживать статус соединения, установив данный параметр.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bA- 06	Выбор формата передачи данных протокола Modbus	Бит единиц: протокол Modbus. 0: Нестандартный протокол Modbus 1: Стандартный протокол Modbus Бит десятков: Profibus DP 0: PP01	31

Код	Название	Диапазон настройки	По
	параметра		умолчанию
		1: PP02	
		2: PP03	
		3: PP05	

bA-06=1: Выберите стандартный протокол Modbus.

bA-06=0: При чтении команды возврат подчиненного устройства на один бит больше, чем стандартный протокол Modbus. Для подробностей см. структуру данных связи в приложении.

Ко	д Название	Диапазон настройки	По
	параметра		умолчанию
bA	- Текущее	0: 0.01A	0
07	разрешение св	язи 1: 0.1А	0

Используется для подтверждения единицы текущего значения, когда соединение считывает выходной ток.

5.12 Группа bb: Сбой и Защита от неисправности

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-00	Выбор типа G/Р	0: тип Р	1
	1	1: тип G	

Данный параметр используется для отображения определенной модели и не может быть изменен.

0: Применим к переменной нагрузке крутящего момента (вентилятор и насос) с заданными параметрами.

1: Применим к постоянной нагрузке крутящего момента с заданными параметрами.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-01	Выбор защиты от перегрузки двигателя	0: Откл. 1: Подкл.	0
bb-02	Усиление защиты от перегрузки двигателя	0.2010.00	1.00

• bb-01 =0

Функция защиты двигателя от перегрузки отключена. Двигатель подвержен потенциальному повреждению из-за перегрева. Предлагается установить тепловое реле между частотным преобразователем и двигателем.

• bb-01 = 1

Частотный преобразователь определяет, перегружен ли двигатель, согласно инверсной временной кривой защиты от перегрузки.

Обратная инверсная временная кривая защиты двигателя от перегрузки:

 $220\% \times (bb-02) \times$ номинальный ток двигателя

(если нагрузка сохраняет одно значение в течение минуты, частотный преобразователь сообщает об ошибке по причине перегрузки), или

 $150\% \times (bb-02) \times$ номинальный ток двигателя

(если нагрузка сохраняет одно значение в течение 60 минут, частотный преобразователь сообщает об ошибке по причине перегрузки).

Установите bb-02 правильно, исходя из фактической перегрузочной способности. Если заданное значение bb-02 слишком велико, это может привести к повреждению двигателя, так как двигатель перегревается, но преобразователь не сообщает об ошибке.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Коэффициент		
	предварительного		
bb-03	предупреждения о	50%100%	80%
	перегрузке		
	двигателя		

Эта функция используется для подачи предупреждающего сигнала системе управления с помощью цифрового выхода перед защитой двигателя от перегрузки. Данный параметр используется для

определения процента, при котором происходит предварительное предупреждение перед перегрузкой мотора. Чем больше значение, тем позднее будет совершено предупреждение.

Когда выходной ток частотного преобразователя больше, чем значение инверсной временной кривой защиты от перегрузки, умноженной на bb-03, включается клемма дискретного выхода

преобразователя, заданная для предупреждения о перегрузке двигателя.

Код	Название параметра	Диапазон настройки	По
			умолчанию
bb-04	Коэффициент усиления защиты от перенапряжения при замедлении	0100	0
bb-05	Уровень защиты от перенапряжения при замедлении	120%150%	130%

Когда напряжение на шине постоянного тока превышает значение bb-05 (Уровень защиты от перенапряжения при замедлении) во время замедления частотного преобразователя, он останавливает торможение и сохраняет текущую рабочую частоту.

После снижения напряжения на шине частотный преобразователь продолжает замедляться.

bb-04 (Коэффициент усиления защиты от перенапряжения при замедлении) используется для регулировки мощности подавления перенапряжения преобразователя частоты. Чем больше значение, тем выше мощность подавления перенапряжения. При условии отсутствия перенапряжения задайте небольшое значение для bb-04.

При малой инерционной нагрузке значение должно быть небольшим. В противном случае динамический отклик системы будет медленным. При большой инерционной нагрузке значение должно быть большим. В противном случае результат подавления будет слабым, и может возникнуть сбой от перенапряжения.

Если коэффициент усиления защиты от перенапряжения при замедлении задан как 0, функция защиты от перенапряжения отключена. Значение уровня защиты от перенапряжения при замедлении, равное 100% соответствует базовым значениям из следующей таблицы:

Класс напряжения	Соответствующее базовое
Однофазный 220 В	290 B
Трехфазный 220 В	290 B
Трехфазный 380 В	530 B
Трехфазный 480 В	620 B
Трехфазный 690 В	880 B

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Коэффициент		
bb-06	усиления защиты	0100	20
00-00	от превышения	0100	20
	тока		
	Уровень защиты		
bb-07	от превышения	100%200%	150%
	тока		

Перегрузка по току: когда выходной ток превышает защитный ток (bb-07) при ускорение/замедлении частотного преобразователя, он останавливает ускорение/замедление и сохраняет текущую рабочую частоту. После того, как выходной ток снижается ниже bb-07, частотный преобразователь продолжает ускоряться/замедляться.

bb-07 (защита от перегрузки по току) используется для выбора текущего значения защиты от перегрузки по току. Эта функция будет работать, если ток превысит bb-07. Это значение представляет собой процентное значение номинального тока двигателя.

bb-06 (коэффициент усиления по току) используется для регулировки мощности подавления перегрузки по току преобразователя частоты. Чем больше значение, тем больше будет потенциал подавления тока. При условии отсутствия текущего тока, установите низкое значение для bb-06.

При малой инерционной нагрузке значение должно быть небольшим. В противном случае

динамический ответ системы будет медленным. При высокой инерционной нагрузке значение должно быть большим. В противном случае результат подавления будет слабым, и может произойти перегрузка по току. Если значение коэффициента усиления по току задано как 0, функция перегрузки по току отключена.

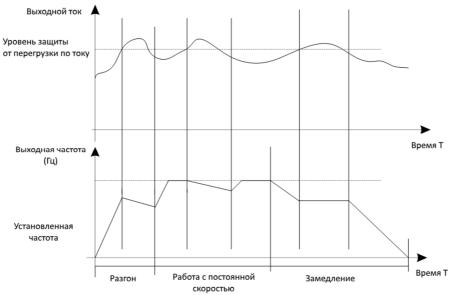


Рис. 5-23 Схема функции защиты от перегрузки по току

Код	Название параметра	Диапазон настройки	По
			умолчанию
bb-08	Защита от короткого замыкания на землю после включения питания	0: Откл. 1: Подкл.	1

Используется для определения, замыкается ли двигатель на короткое замыкание на землю после включения частотного преобразователя. Если данная функция включена, UVW преобразователя будет иметь выход напряжения через некоторое время после включения питания.

К	Сод	Название параметра	Диапазон настройки	По
				умолчанию
bb	o-09	Время автоматического сброса ошибок	020 (неограниченное количество раз)	0

Используется для установки времени автоматического сброса ошибок. После превышения значения частотный преобразователь будет находиться в состоянии сбоя.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Выбор		
bb-10	действительности): Не действует 1: Действует	
	реле при		0
	автоматическом	1. денотвует	
	сбросе ошибок		

Используется, чтобы определить, действует ли дискретный выход при автоматическом сбросе ошибок.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Временной		
bb-11	интервал	0.1c100.0c	1.0c
	автоматического	0.10100.00	1.00
	сброса		

Используется для установки времени ожидания от аварийного сигнала до автоматического сброса.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Выбор защиты от	Бит единиц: Защита от потери фазы входа	
	потери фазы	0: Откл.	
bb-12	входа/защиты от	1: Вкл.	0
	замыкания	Бит десятков: Защита от замыкания контактора	
	контактора	0,1(то же, что для бита единиц)	

Используется для определения того, следует ли выполнять защиту от потери фазы входа или защиту от замыкания контактора.

Модели SL9, которые предоставляют данную функцию, перечислены в таблице ниже.

Класс напряжения	Модели
Однофазный 220 В	Нет
Трехфазный 220 B	Модели с 11 kW G
я Трехфазный 380 В	Модели с 18.5 kW G
Трехфазный 690 В	Модели с 18.5 kW G

Для каждого класса напряжения преобразователи SL9 предоставляют функцию защиты от потери фазы входа или защиты от замыкания контактора для перечисленных моделей. Частотные преобразователи SL9 не оснащены этой функцией, если мощность ниже указанной, вне зависимости от того, задано для bb-12 0 или 1.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-13	Защита от потери	0: Откл.	0
00-13	фазы выхода	1: Вкл.	U

Используется для определения того, нужно ли выполнять защиту от потери фазы выхода.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-14	Защита от потери	0: Откл.	0
00-14	нагрузки	1: Вкл.	0
	Уровень		
bb-15	определения	0.0%100.0% (номинальный ток двигателя)	1.0%
	потери нагрузки		
bb-16	Время определения	0.0c60.0c	1.0c
00-10	потери нагрузки	0.0000.00	1.00

Если защита от потери нагрузки включена, когда выходной ток частотного преобразователя ниже уровня обнаружения (bb-15), а продолжительность превышает время определения (bb-16), выход частоты преобразователя автоматически снижается до 7% от номинальной частоты. Во время защиты частотный преобразователь автоматически разгоняется до заданной частоты, если нагрузка восстанавливается до нормального уровня.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-17	Значение обнаружения превышения скорости	0.0%50.0% (максимальная частота)	20.0%
bb-18	Время обнаружения превышения скорости	0.0c60.0c	1.0c

Эта функция действительна только, когда частотный преобразователь работает в режиме VC+PG. Если фактическая скорость вращения, определенная частотным преобразователем, превысила максимальную частоту, а значение превышения больше, чем значение bb-17, и время превысило значение bb-18, частотный преобразователь сообщает об ошибке Err43 и действует в соответствии с выбранным способом защиты от сбоев.

Если значение bb-18 (время обнаружения превышения скорости) равно 0.0с, функция обнаружения превышения скорости отключена.

Код	Название	Диапазон настройки	По умолчанию
	параметра Значение		умолчанию
bb-19	обнаружения слишком большого	0.0%50.0% (максимальная частота)	20.0%
	отклонения скорости		
	Время		
	обнаружения		
bb-20	слишком большого	0.0c60.0c	5.0c
	отклонения		
	скорости		

Эта функция действительна только, когда частотный преобразователь работает в режиме VC+PG. Если преобразователь обнаруживает отклонения больше bb-19 между фактической частотой вращения двигателя и заданной частотой двигателя, а время превышает значение bb-20, преобразователь частотны сообщает об ошибке Err42 и действует в соответствии с выбранной зашитой от сбоев.

Если bb-20 (Время обнаружения слишком большого отклонения скорости) задано как 0.0c, функция отключена.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Выбор действия	0: Недействителен	
bb-21	при мгновенном	1: Замедление	0
	сбое питания	2: Замедление до остановки	
	Напряжение при		
bb-22	проверке при	60.0%100.0% (стандартное напряжение по шине)	85.0%
00-22	мгновенном сбое	00.0%100.0% (стандартное напряжение по шине)	83.0%
	питания		
	Время проверки		
bb-23	реле напряжения	0.00c100.00c	0.50c
00-23	при мгновенном		0.500
	сбое питания		
	Напряжение при		
bb-24	проверке во время		
	восстановления	60.0%100.0% (стандартное напряжение по шине)	80.0%
	после мгновенного		
	сбоя питания		

При мгновенном сбое питания или резком падении напряжения напряжение на шине постоянного тока уменьшается. Эта функция позволяет частотному преобразователю компенсировать сокращение напряжения на нише постоянного тока с помощью энергии обратной связи нагрузки, уменьшая выходную частоту, чтобы поддерживать постоянную работу частотного преобразователя.

- Если bb-21 = 1, когда происходит мгновенный сбой питания или резкое падение напряжения, преобразователь замедляется до тех пор, пока напряжение шины постоянного тока не восстановится до нормального значения, и ускоряется до заданной частоты. Если напряжение на шине остается нормальным в течение времени, превышающего значение bb-22, считается, что напряжение шины постоянного тока восстанавливается до нормального уровня.
- Если bb-21 = 2, когда происходит мгновенное питание или резкое падение напряжения, преобразователь замедляется до остановки.



Рис. 5-24 Диаграмма действий частотного преобразователя при мгновенном сбое питания

Код	Название	Диапазон настройки	По
	параметра		умолчанию
	Тип датчика	0: Нет датчика температуры	
bb-25	температуры	1: PT100	0
	двигателя	2: PT1000	
	Порог защиты от		
bb-26	перегрева	0°C200°C	120°C
	двигателя		
	Порог		
	предварительного		
bb-27	предупреждения о	0°C200°C	100°C
	перегреве		
	двигателя		

Сигнал датчика температуры двигателя необходимо подключить к дополнительной плате расширения входа-выхода. Эта карта является опциональной. РG карта также может быть использована для ввода температурного сигнала с функцией защиты от перегрева двигателя. Чтобы узнать подробности, свяжитесь с производителем или дистрибьютером.

Интерфейс PG карты SL9 поддерживает PT100 и PT1000. Задайте правильный тип датчика во время использования. Вы можете узнать температуру двигателя с помощью параметра U0-34.

Если температура двигателя превышает значение bb-26, частотный преобразователь сообщает о тревоге и действует в соответствии с выбранным способом защиты от сбоя.

Если температура двигателя превышает значение bb-27, включается клемма DO преобразователя частоты, установленная для предупреждения о перегреве двигателя.

 Код
 Название параметра
 Диапазон настройки
 По умолчанию

 bb-28
 Порог перенапряжения
 200.0...2500.0 В
 810В

Используется для установки порога перенапряжения частотного преобразователя. Значения по умолчанию для разных классов напряжения перечислены ниже.

Класс напряжения	Порог перенапряжения по умолчанию
Однофазный 220 B	400.0 B
Трехфазный 220 B	400.0 B
Трехфазный 380 В	830.0 B
Трехфазный 480 В	890.0 B
Трехфазный 690 В	1300.0 B

Примечание: Значение по умолчанию также является верхним пределом внутреннего напряжения защиты от перенапряжения. Данный параметр вступает в силу, когда значение bb-

28 ниже значения, заданного по умолчанию. Если значение выше заданного по умолчанию, используйте значение по умолчанию.

Код	Название параметра	Диапазон настройки	По
			умолчанию
bb-29	Порог пониженного	2002000B	Зависит от
00 27	напряжения	2002000B	модели

Используется для установки порога пониженного напряжения Err09. Порог пониженного напряжения для разных классов напряжения, соответствующий различным номинальным значениям, указан ниже.

Класс напряжения	Номинальное значение порога пониженного напряжения
Однофазный 220 В	200 B
Трехфазный 220 B	200 B
Трехфазный 380 В	350 B
Трехфазный 480 В	450 B
Трехфазный 690 В	650 B
Трехфазный 1140 В	1350 B

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-30	Коэффициент использования тормозного блока	0%100%	100%

Параметр действителен только для частотных преобразователей с внутренним тормозным блоком и используется для регулировки КПД тормозного блока. Чем больше значение данного параметра, тем лучше будет результат торможения. Однако слишком большое значение вызовет большие колебания шины постоянного тока при торможении.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-31	Предел быстрого	0: Откл.	1
00-31	тока	1: Вкл.	1

Функция ограничения быстрого тока может максимально сократить количество сбоев из-за превышения тока, гарантируя бесперебойную работу частотного преобразователя.

Однако длительное ограничение может привести к перегреву преобразователя, что недопустимо. В этом случае преобразователь сообщит об ошибке Err40, указав на перегрузку и необходимость остановки.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
bb-32	Выбор действия защиты от сбоев 1	Бит единиц: Перегрузка двигателя, Err11. 0: Свободная остановка 1: Остановка в соответствии с режимом останова 2: Продолжение работы Бит десятков: Потеря фазы питания, Err12. То же, что и для бита единиц Бит сотен: Потеря фазы выходной мощности, Err13. То же, что и для бита единиц Бит тысяч: Сбой внешнего оборудования, Err15. То же, что и для бита единиц Бит десятков тысяч: Сбой связи, Err16. То же, что и для бита единиц	00000
bb-33	Выбор действия защиты от сбоев 2	Бит единиц: Ошибка карты Encoder/PG, Err20. 0: Свободная остановка Бит десятков: Ошибка чтения-записи EEPROM, Err21. 0: Свободная остановка 1: Остановка в соответствии с режимом останова	00000

Код	Название параметра	Диапазон настройки	По умолчанию
	параметра	Бит сотен : Запасной	умолчанию
		Бит тысяч: Перегрев двигателя, Егг25.	
		То же, что и для бита единиц в bb-32	
		Бит десятков тысяч: Достигнуто время работы, Егг26.	
		То же, что и для бита единиц в bb-32	
		Бит единиц: Пользовательская ошибка 1, Егг27.	
		То же, что и для бита единиц в bb-32	
		Бит десятков: Пользовательская ошибка 2, Err28.	
		То же, что и для бита единиц в bb-32	
		Бит сотен: Суммарное время питания достигнуто,	
		Err29.	
		То же, что и для бита единиц в bb-32	
	Выбор действия защиты от сбоев 3	Бит тысяч: Без нагрузки, Err30.	
bb-34		0: Свободная остановка	00000
		1: Остановка в соответствии с режимом останова	
		2: уменьшить до 7% от номинальной частоты	
		двигателя и продолжить работу. Если нагрузка	
		восстановится и автоматически вернется к заданной	
		частоте.	
		Бит десятков тысяч: Потеря обратной связи от ПИД	
		во время работы, Егг31.	
		То же, что и для бита единиц в bb-32	
		Бит единиц: Отклонение скорости слишком велико,	
		Err42	
		То же, что и для бита единиц в bb-32	
bb-35	Выбор действия	Бит десятков: Превышение скорости двигателем,	00000
00-33	защиты от сбоев 4	Err43.	00000
		То же, что и для бита единиц в bb-32	
		Бит сотен: Ошибка начального положения, Err51.	
		То же, что и для бита единиц в bb-32	

- Если выбрана «Свободная остановка», частотный преобразователь отображает Егт** и сразу останавливается.
- Если выбрана «Остановка в соответствии с режимом останова», частотный преобразователь отображает А** и останавливается в соответствии с режимом останова. Посте остановки преобразователь отображает Егг**.

● Если выбрано «Продолжение работы», частотный преобразователь продолжает работу и отображает А**. Рабочая частота устанавливается в bb-36.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
		0: Текущая работая частота	
	Выбор частоты для	1: Заданная частота	
bb-36	продолжения	2: Верхний предел частоты	0
	работы после сбоя	3: Нижний предел частоты	
		4: Резервная частота для отклонений (bb-37)	
bb-37	Резервная частота	0.00% 100.00% (Mayayaya W. Mag. Mag. Mag.	1.0%
00-37	для отклонений	0.0%100.0% (максимальная частота)	1.0%

Если во время работы частотного преобразователя возникает неисправность, а для работы с неисправностью задано «Продолжение работы», », частотный преобразователь продолжает работу на частоте, заданной в bb-36 и отображает A^{**} .

Параметр bb-37 представляет собой процентное отношение к максимальной частоте.

5.13 Группа bC: Параметры обнаружения неисправностей

Код	Название параметра	Диапазон настройки
bC-00	1-й тип	099

Код	Название	Диапазон настройки
	параметра	
	неисправности	
bC-01	2-й тип	099
UC-01	неисправности	033
	3-й тип	
bC-02	С-02 неисправности 099	099
	(последний)	

Данный параметр используется для записи типов последних сбоев частотного преобразователя. 0 указывает на отсутствие сбоев. Возможные причины и решения для каждой неисправности указаны в главе 8.

ВС-03	главе 8.	-	
bC-03 Частота последней неисправности Отображает частоту во время последнего сбоя. bC-04 Ток последней неисправности Отображает ток во время последнего сбоя. bC-05 Напряжение шины постоянного тока при последней неисправности Отображает напряжение шины постоянного тока во время последнего сбоя. bC-06 Состояние входных клемм при последней неисправности Отображает состояние всех DI клемм во время последнего сбоя в следующей последовательности: bC-07 Состояние выходных клемм при последней неисправности ВПТЭ ВПТЭ ВПТЭ ВПТЭ ВПТВ ВПТЭ ВПТВ ВПТО ВПВ ВПТ ВПТО ВПВ ВЫХОДНЫЯ КЛЕММ при последней пеисправности Отображает состояние всех выходных клемм во время последнего сбоя в следующей последовательности: bC-07 Состояние частотного преобразователя при последней пеисправности ВПТЗ ВПТЗ ВПТЗ ВПТЗ ВПТВ ВПТО ВПВ ВПТВ ВПТВ ВПТО ВПВ ВПТВ ВПТ	Код	Название	Диапазон настройки
ВС-04 неисправности ВС-04 Ток последней неисправности Напряжение шины постоящного тока при последней неисправности ВС-06 Постояние входных клемм при последней неисправности ВС-07 Росстояние входных клемм при последней неисправности ВС-08 В Состояние входных клемм при последней неисправности ВС-09 Последней неисправности ВС-10 Последней неисправности ВС-11 Последней неисправности ВС-12 Последней неисправности ВС-13 Послояние неисправности ВС-14 Последней неисправности ВС-05 Последней неисправности ВС-06 Последней неисправности ВС-07 Последней неисправности ВС-18 Последней неисправности ВС-19 Последней неисправности ВС-10 Последней неисправности ВС-11 Последней неисправности ВС-12 Последней неисправности ВС-13 Последней неисправности ВС-14 Последней неисправности ВС-15 Последней неисправности ВС-16 Последней неисправности ВС-16 Последней неисправности ВС-17 Последней неисправности ВС-18 Последней неисправности ВС-19 Последней неисправности ВС-10 Последней неисправности ВС-11 Последней неисправности ВС-12 Последней неисправности ВС-13 Последней неисправности ВС-14 Последней неисправности ВС-15 Последней неисправности ВС-16 Последней неисправности ВС-17 Последней неисправности ВС-18 Последней неисправности ВС-19 Последней неисправности ВС-10 Посл		параметра	
Весправности Отображает ток во время последнего сбоя.	bC-03	Частота последней	Отображает частоту во время последнего сбоя.
ВС-04 Напряжение шины постоянного тока при последней пеисправности Отображает ток во время последней пеисправности Отображает состояние всех DI клемм во время последнего сбоя в следующей последовательности:	00 03	неисправности	отвершинот инстету во времи нестодить сеси.
ВС-05 ВС-06 ВС-06 ВС-06 ВС-06 ВС-06 ВС-07 ВС-07 ВС-07 ВС-07 ВС-07 ВС-07 ВС-08 ВС-07 ВС-08 ВС-08 ВС-08 ВС-09 ВС-08 ВС-09 ВС-0	bC-04	Ток последней	Отображает ток во время последнего сбоя.
bC-05 постоящого тока при последней неисправности Отображает напряжение шины постоянного тока во время последнего сбоя. bC-06 Состояние входных клеми при последней неисправности Отображает состояние всех DI клеми во время последнего сбоя в следующей последовательности:	0001	неисправности	1 1 7
рос. образователя при последней неисправности Состояние входных клемм при последней неисправности ВС-06 ВС-06 ВС-06 Состояние входных клемм при последней неисправности ВС-07 ВС-07 ВС-07 ВС-08 ВС-08 ВС-09 ВС-09 ВС-09 ВС-09 ВС-09 ВС-09 ВС-09 ВС-09 ВС-09 ВС-01 ВС-11 ВС-11 ВС-11 Последней неисправности Последней неисправности ВС-01 ВС-01 ВС-01 ВС-01 ВС-01 ВС-01 ВС-01 Последней неисправности Последней неисправности ВС-01 ВС-02 ВС-03 ВС-04 ВС-04 ВС-04 ВС-05 ВС-05 ВС-05 ВС-06 ВС-06 ВС-06 ВС-06 ВС-06 ВС-07		_	
рс-06 востояние входных клемм при последней неисправности ВТР ВІТ8 ВІТ7 ВІТ6 ВІТ5 ВІТ4 ВІТ3 ВІТ2 ВІТ1 ВІТ0 ТОО ТООБражаєт состояние всех DI клемм во время последнего сбоя в следующей последовательности: ВІТ9 ВІТ8 ВІТ7 ВІТ6 ВІТ5 ВІТ4 ВІТ3 ВІТ2 ВІТ1 ВІТ0 ТОО 19 10 В 19 10 В 10 НО 15 Б14 ВІЗ ВІТ2 ВІТ1 ВІТ0 ТОО ОТОБражаєт состояние всех выходных клемм во время последней последней неисправности Выходных клемм при последней неисправности Выходных клемм при последней неисправности ВС-08 Преобразователя при последней неисправности ВРемя включения при последней неисправности ВРемя включения при последней неисправности ВС-10 Время работы при последней неисправности ВС-11 Частота 2-й неисправности ВС-12 Тох 2-й неисправности Напряжение шины постоянного тока Тох 2-й неисправности Напряжение шины постоянного тока	bC-05		1
ВС-06 ВС-07 ВС-08 ВС-09 ВС-00 ВС-01		•	последнего сооя.
ВС-06		неисправности	OTO STORY OF CONTROL OF DAY DI MANAGE DO DESIGNATION OF DESIGNATIO
ВЕТР ВТТВ ВТТР ВТТР ВТТВ ВТТР ВТТР ВТТВ ВТТР ВТР В			
bC-06 клемм при последней неисправности неисправности DIO DI9 DI8 DI7 HDI DI5 DI4 DI3 DI2 DI1 Eсли цифровой вход включен, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. C-07 Отображает состояние выходных клемм при последней неисправности ВПТ4 ВІТ3 ВІТ2 ВІТ1 ВІТ0 DO2 DO1 REL2 REL1 FMP БС-08 Состояние частотного преобразователя при последней неисправности Клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. БС-08 Преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10.		Состояние входных	1
ВС-07 Преобразователя при последней неисправности В Время включения при последней неисправности В Время включения при последней неисправности В Время работы во время последнего сбоя. В Время работы в в ключения во время последнего сбоя. В В Выходных клем в Выкоднам веся выходных клем в время последнего сбоя в следующей последнего сбоя. В В Выходных клем в ВВТЗ В ВТЗ ВТТ В ВТО В ВПТЗ ВТТЗ ВТТ2 ВТТ ВТТ0 В Выходная клемма включена, значение равно 0. Значение равно 1. Если клем в Выходнах включена, значение равно 0. Значение равно 1. Всли клем включена, значение равно 0. Значение равно 1. Всли клем включена, значение равно 1. Всли клем включена, значение равно 1. Всли клем включена, значение равно 1. Всли включена, значение равно 1. Всли включена, значение равно 1.	bC-06	клемм при	
вход выключен, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. Состояние выходных клемм при последней неисправности ВС-08 Состояние частотного преобразователя при последней неисправности ВС-09 Время включения при последней неисправности ВС-10 Время работы при последней неисправности ВС-11 Ток 2-й неисправности Вход выключен, значение равно 0. Значение вовь время последнего сбоя в следующей последней клемма включена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. Отображает текущее время включения во время последнего сбоя. Отображает текущее время работы во время последнего сбоя. Ток 2-й неисправности Напряжение шины постоянного тока	00-00	последней	
ВС-07 Время включения при последней неисправности ВС-09 Время включения при последней неисправности ВС-09 Время включения при последней неисправности ВС-10 Время работы при последней неисправности ВС-11 Частота 2-й неисправности ВС-12 Ток 2-й неисправности ВС-13 Потем от брем об достояние в сех выходных клемм во время последней неисправности носледней неисправности неисправности ВС-13 Пок 2-й неисправности ВС-14 Папряжение шины постоянного тока В деятичное число, эквивалентное статусу цифрового входа. ВС-15 Пок 2-й неисправности ВС-16 Папряжение шины постоянного тока В деятичное число, эквивалентное статусу цифрового входа. В деятичное число, эквивалентное число, эквивалентное статусу цифрового входа. В деятичное число, эквивалентное статусу цифрового входа. В деятичное число, экв		неисправности	
Время включения при последней неисправности ВРемя включения при последней неисправности ВРемя работы при последней неисправности ВРемя работы при последней неисправности ВС-10 Время работы при последней неисправности ВС-11 Время работы при последней неисправности ВС-12 Ток 2-й неисправности ВС-13 Отображает состояние всех выходных клемм во время последовательности: ВВІТ4 ВІТ3 ВІТ2 ВІТ1 ВІТ0 DO2 DO1 REL2 REL1 FMP Если выходная клемма включена, значение равно 1. Если клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. Отображает текущее время включения во время последнего сбоя. Отображает текущее время работы во время последнего сбоя. То же, что и для bС-03bС-10.			<u> </u>
bC-07 Состояние выходных клемм при последней неисправности BIT4 BIT3 BIT2 BIT1 BIT0 bC-08 При последней неисправности Если выходная клемма включена, значение равно 1. Всли клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. bC-08 Состояние частотного преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Частота 2-й неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока Постоянного тока			
Выходных клемм при последней неисправности В Состояние частотного преобразователя при последней неисправности В Время включения при последней неисправности В Время включения при последней неисправности В Время включения при последней неисправности В Время работы при последней неисправности В В В В В В В В В В В В В В В В В В В			последнего сбоя в следующей последовательности:
bC-07 выходных клемм при последней неисправности DO2 DO1 REL2 REL1 FMP Eсли выходная клемма включена, значение равно 1. Если клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. BC-08 Состояние частотного преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Частота 2-й неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока Постоянного тока		Состояние	BIT4 BIT3 BIT2 BIT1 BIT0
рс-07 при последней неисправности клемма отключена, значение равно 1. Если клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. Состояние частотного преобразователя при последней неисправности Время включения при последней неисправности Время работы при последней неисправности Время работы при последней неисправности Вс-10 Частота 2-й неисправности Вс-12 Ток 2-й неисправности Напряжение шины постоянного тока Напряжение шины постоянного тока	1.00		DO2 DO1 REL2 REL1 FMP
неисправности Время включения при последней неисправности Время работы при последней неисправности Вос-10 Вос-11 Вос-12 Ток 2-й неисправности Напряжение шины постоянного тока Клемма отключена, значение равно 0. Значение представляет собой десятичное число, эквивалентное статусу цифрового входа. Запасной Отображает текущее время включения во время последнего сбоя. Отображает текущее время работы во время последнего сбоя. То же, что и для bС-03bС-10.	bC-07		Если выходная клемма включена, значение равно 1. Если
bC-08 Состояние частотного преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока То же, что и для bC-03bC-10.		_	клемма отключена, значение равно 0. Значение представляет
bC-08 Состояние частотного преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Постоянного тока		-	собой десятичное число, эквивалентное статусу цифрового
bC-08 частотного преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Отображает текущее время работы во время последнего сбоя. bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Постоянного тока То же, что и для bC-03bC-10.			входа.
bC-08 преобразователя при последней неисправности Запасной bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Постоянного тока То же, что и для bC-03bC-10.		Состояние	
при последней неисправности Время включения при последней неисправности Время работы при последней неисправности Время работы при последней неисправности Время работы при последней неисправности ВС-10 Время работы при последней неисправности ВС-11 Ток 2-й неисправности ВС-12 Напряжение шины постоянного тока Время работы по отображает текущее время работы во время последнего сбоя. То же, что и для bС-03bС-10.		частотного	
Неисправности	bC-08	преобразователя	Запасной
bC-09 Время включения при последней неисправности Отображает текущее время включения во время последнего сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности неисправности То же, что и для bC-03bC-10. bC-13 Постоянного тока		при последней	
bC-09 при последней неисправности Время работы при последней неисправности bC-10 Последней неисправности bC-11 Частота 2-й неисправности bC-12 Ток 2-й неисправности bC-13 постоянного тока Время работы при последней сбоя. Отображает текущее время включения во время последнего сбоя. Ток 2-й неисправности То же, что и для bC-03bC-10.			
bC-09 при последней неисправности сбоя. bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Постоянного тока То же, что и для bC-03bC-10.	1.000	_	Отображает текущее время включения во время последнего
bC-10 Время работы при последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока То же, что и для bC-03bC-10.	bC-09	1	
bC-10 последней неисправности Отображает текущее время работы во время последнего сбоя. bC-11 Частота 2-й неисправности Ток 2-й неисправности bC-12 Ток 2-й неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока постоянного тока			
неисправности bC-11 Частота 2-й неисправности bC-12 Ток 2-й неисправности неисправности То же, что и для bC-03bC-10. bC-13 Напряжение шины постоянного тока	bC 10		OTOKnawaet tekvillee prema nakotu po prema nochenijero okog
bC-11	DC-10		Отооражает текущее времи расоты во времи последнего соой.
bC-11 неисправности bC-12 Ток 2-й неисправности Hапряжение шины постоянного тока то же, что и для bC-03bC-10.			
bC-12 Ток 2-й неисправности bC-13 Постоянного тока То же, что и для bC-03bC-10.	bC-11		
bC-12 неисправности Напряжение шины постоянного тока То же, что и для bC-03bC-10.			
ВС-13 Напряжение шины постоянного тока	bC-12		То же, что и для bC-03bC-10.
bC-13 постоянного тока			
	bC-13	_	
		при 2-й	

Код	Название	Диапазон настройки
	параметра	
	неисправности	
	Состояние входных	
bC-14	клемм при 2-й	
	неисправности	
	Состояние	
	выходных клемм	
bC-15	при 2-й	
	неисправности	
	Состояние	
	частотного	
bC-16	преобразователя	
	при 2-й	
	неисправности	
	Время включения	
bC-17	при 2-й	
	неисправности	
	Время работы при	
bC-18	2-й неисправности	
	Частота 1-й	
bC-19	неисправности	
	Ток 1-й	
bC-20	неисправности	
	Напряжение шины	
bC-21	постоянного тока	
	при 1-й неисправности	
	_	
bC-22	Состояние входных	
0C-22	клемм при 1-й	
	неисправности	
	Состояние	То же, что и для bC-03bC-10.
bC-23	выходных клемм	10 же, 110 и для ве взве 10.
DC-23	при 1-й	
	неисправности	
	Состояние	
hC 24	частотного	
bC-24	преобразователя	
	при 1-й	
	неисправности	
1.00	Время включения	
bC-25	при 1-й	
	неисправности	
bC-26	Время работы при	
20 20	1-й неисправности	

5.14 Группа bd Защита двигателя

bd-00	Уровень превышения тока		По умолч.	0.00
DG-00	Диапазон	0.0~600A		
hd 01	Задержка срабатыв	ания защиты	По умолч.	0.00
bd-01	Диапазон	0.0~600c		

Например, если мощность двигателя равна 4 кВт, а пользователью нужно защитить мотор от превышения тока 6 А в течение более, чем 5 секунд, устанавливаются

параметры: bd-00=6.00A и bd-01=5.0c. При превышении тока выведется ошибка Err24 и инвертор остановит мотор.

5.15 Группа С0: Функция ПИД-регулирования процесса

ПИД-регулирование — это общий метод управления процессом. Выполняя пропорциональные, интегральные и дифференциальные операции с разницей между сигналом обратной связи и целевым сигналом, он регулирует выходную частоту и представляет собой систему обратной связи для стабилизации контролируемого счетчика вокруг целевого значения.

Он применяется для управления технологическими процессами, такими как: управление потоком, контроль давления и контроль температуры. На следующем рисунке показана блоксхема ПИД-регулирования.

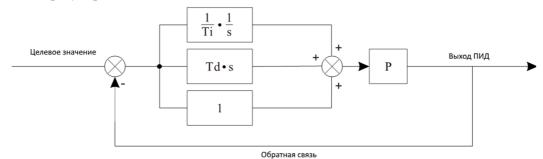


Рис. 6-25 Блок-схема ПИД-регулирования.

		7 1 3 1			
Код	Название	Диапазон настройки	По		
	параметра		умолчанию		
		0: C0-01			
		1: AI1			
	Источник	2: AI2			
C0-00	установки ПИД-	3: AI3	0		
	регулирования	4: Настройка импульсов (HDI)			
		5: Настройка связи			
		6: Многофункциональная			
	Цифровая				
C0-01	настройка ПИД-	0.0%100.0%	50.0%		
	регулирования				

С0-00 используется для выбора канала настройки целевого процесса PID. Значение PID является относительным значением и составляет от 0,0% до 100,0%. Обратная связь ПИД-регулятора также является относительной величиной. Назначение ПИД-регулирования заключается в том, чтобы производить ПИД настройку и обратную связь ПИД-регулятора.

		, I		J 1
ĺ	Код	Название	Диапазон настройки	По
		параметра		умолчанию
	C0-02	Время изменения настройки ПИД-	0.00c650.00c	0.00c
		регулирования		

Время изменения настройки ПИД-регулирования указывает на время, необходимое для изменения ПИД-регулирования с 0,0% до 100,0%. Настройка ПИД-регулятора производится линейно в соответствии с временем изменения, уменьшая воздействие, вызванное внезапными изменениями настроек в системе.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
C0-03	Источник обратной связи ПИД	0: AI1 1: AI2 2: AI3 3: Настройка импульса (HDI) 4: AI1 – AI2 5: AI1 + AI2	0

Код	Название	Диапазон настройки	По
	параметра		умолчанию
		6: MAX (AI1 , AI2)	
		7: MIN (AI1 , AI2)	
		8: Настройка связи	

Этот параметр используется для выбора канала сигнала обратной связи процесса ПИД.

Обратная связь ПИД является относительной величиной и составляет от 0,0% до 100,0%.

Обратная связь ПИД также является относительным значением. Функция ПИД состоит в том, чтобы сделать два значения равными.

Код	Название	Диапазон настройки	По
	параметра		умолчанию
C0-04	Направление	0: Прямое действие	0
C0-04	действия ПИД	1: Обратное действие	U

0: Прямое действие

Когда значение обратной связи меньше, чем значение ПИД-регулятора, выходная частота преобразователя частоты увеличивается. Например, для регулирования натяжения намотки требуется прямое действие ПИД.

1: Обратное действие

Когда значение обратной связи меньше, чем значение PID, частота выходного сигнала преобразователя частоты уменьшается. Например, для регулирования натяжения размотки требуется обратное действие ПИД.

Обратите внимание, что на эту функцию влияет функция DI 35 «Обратное направление действия ПИД».

Код	Название	Диапазон настройки	По
	параметра		умолчанию
C0-05	Диапазон настройки обратной связи ПИД	065535	1000

Этот параметр является безразмерной единицей. Он используется для отображения настроек ПИД (U0-15) и отображения обратной связи ПИД (U0-16).

Относительное значение 100% обратной связи по настройке ПИД-регулятора соответствует значению C0-05. Если значение C0-05 задано как 2000, а значение ПИД-регулирования - 100,0%, то дисплей настройки ПИД (U0-15) равен 2000.

Код	Название параметра	Диапазон настройки	По
			умолчанию
C0-06	Пропорциональное усиление KP1	0.0010.0	20.0
C0-07	Интегральное время ТІ1	0.01c10.00c	2.00c
C0-08	Дифференциальное время TD1	0.000c10.000c	0.000c

• С0-06 (Пропорциональное усиление Кр1)

Этот параметр определяет интенсивность регулировки ПИД - регулятора. Чем выше Kp1, тем больше регулировочная интенсивность. Значение 10.00 показывает, когда отклонение между обратной связью PID - регулятора и установкой PID - регулятора составляет 100,0%,

уровень регулирования ПИД - регулятора в отношении частоты выходного сигнала имеет максимальное значение.

• C0-07 (интегральное время Ti1)

Этот параметр определяет интегральную интенсивность регулирования. Чем короче интегральное время, тем больше интенсивность регулирования. Когда отклонение между ПИД - обратной связью и установкой ПИД -регулятора составляет 100,0%, интегральный регулятор выполняет

непрерывную корректировку во времени. Затем, амплитуда регулировки достигает максимальной частоты.

• C0-08 (дифференциальное время Td1)

Данный параметр определяет интенсивность регулирования ПИД - регулятора при изменении отклонения. Чем дольше дифференциальное время, тем больше интенсивность регулировки. Дифференциальное время - это время, в течение которого изменение уровня обратной связи достигает 100,0%, а затем амплитуда регулировки достигает максимальной частоты.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-09	Пропорциональный коэффициент KP2	0.00~10.00	20.0
C0-10	Интегральное время TI2	0.01c~10.00c	2.00c
C0-11	Дифференциальное время TD2	0.01c~10.00c	0.000c
C0-12	Параметр PID (ПИД) режим переключения	0: Нет переключения 1: Переключение через DI 2: Автоматическое переключение на основе отклонения	0
C0-13	Параметр PID (ПИД) отклонение переключения 1	0.0% ~ C0-14	20.0%
C0-14	Параметр PID (ПИД) отклонение переключения 2	C0-13 ~ 100.0%	80.0%

В некоторых условиях применения требуется переключение параметров ПИД, когда одна группа параметров ПИД - регулирования не может удовлетворить требование всего запущенного процесса. Эти параметры используются для переключения между двумя группами ПИД - параметров. Параметры регулятора C0-09 ~ C0-11 устанавливаются так же, как C0-06 ~ C0-08. Переключение может быть реализовано либо через DI-терминал, либо осуществляется автоматически на основании отклонения.

Если вы выбираете переключение через DI-терминал, DI должен быть установлен с функцией 43 «Переключение параметров ПИД».

Если DI отключен, выбирается группа 1 (C0-06 ~ C0-08). Если DI включен, выбирается группа 2 (C0-09-C0-11).

Если вы выбираете автоматическое переключение, когда абсолютное значение отклонения между обратной связью ПИД - регулятора и установкой ПИД - регулятора меньше, чем значение C0-13, выбирается группа 1. Когда абсолютное значение отклонения между ПИД - обратной связью и установкой ПИД - регулятора выше, чем значение C0-14, выбирается группа 2. Когда есть отклонение между C0-13 и C0-14, ПИД - параметры представляют собой линейное интерполированное значений двух величин параметра.

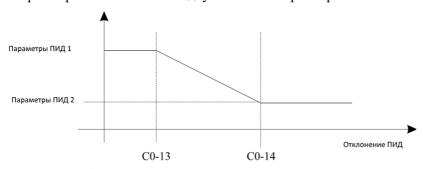


Диаграмма 5-26 Переключение параметров ПИД

Код	Название параметра	Диапазон настройки	По умолчанию
C0-15	Интегральное свойство ПИД	Разряд единиц: Интеграл отделен. 0: Недействительный 1: Действителен Разряд десятков: прекратить интегральную работу, когда выход достигнет предела. 0: продолжить режим работы интеграла 1: Прекратить интегральную работу	00

• Интегральное разделение

Если интегральное разделение установлено как действительное, а DI определяется как функция 22 «ПИД - интегральная пауза»,то в этом случае действуют только пропорциональные и дифференциальные операции.

Если интегральное разделение установлено на недействительное, независимо от того, включен ли DI с функцией 22 «ПИД - интегральная пауза» или нет, целостное разделение остается недействительным.

• Остановка интеграла

После того, как выход достиг максимального или минимального предела при работе ПИД, мы можем выбрать, остановить интегральную операцию или нет. При выборе остановки сокращается выброс ПИД - регулятора.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-16	Начальное значение ПИД - регулятора	0.0%~100.0%	0.0%
C0-17	Время выдержки начального значения ПИД - регулятора	0.00c~650.00c	0.00c

Когда преобразователь частоты запускается, устанавливается начальное значение выходного сигнала ПИД - регулятора (С0-16) и выдерживается время (С0-17), после которого ПИД – регулятор работает в режиме замкнутого контура с обратной связью.

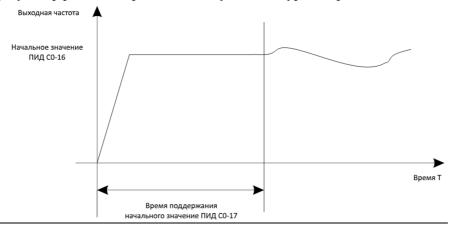


Диаграмма 5-27 Функция начального значения ПИД

Код	Название параметра	Диапазон настройки	По умолчанию
C0-18	Верхний предел	0.00 ~ максимальная	2,00 Гц

частоты обратного вращения ПИД - регулятора	частота	
регулитора		

В некоторых ситуациях, только когда выходная частота ПИД имеет отрицательное значение (преобразователь частоты обратного вращения), настройка ПИД и обратная связь ПИД - регулятора могут быть равны. Однако в некоторых видах применения, слишком высокая частота обратного вращения запрещена, а С0-18 используется для определения верхнего предела частоты обратного вращения.

Код	Названиепараметра	Диапазон настройки	По умолчанию
C0-19	Предел отклонения ПИД - регулятора	0.0%~100.0%	0.0%

Если отклонение между ПИД - обратной связью и установкой ПИД - регулятора меньше, чем значение C0-19, ПИД - регулирование прекращается.

Небольшое отклонение между ПИД - обратной связью и настройкой ПИД - регулятора стабилизирует выходную частоту, что эффективно сказывается для применений с замкнутой системой управления.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-20	Предел ПИД - регулирования	0.00%~100.00%	0.10%

Он используется для установки диапазона дифференциального выхода ПИД - регулятора. При ПИД - регулировании дифференциальная операция может привести к колебаниям системы. Таким образом, дифференциальное регулирование ПИД ограничено небольшим диапазоном.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-21	Максимальное положительное отклонение между двумя выходами ПИД	0.00%~100.00%	1.00%
C0-22	Максимальное отрицательное отклонение между двумя выходами ПИД	0.00%~100.00%	1.00%

Эта функция используется для ограничения отклонения между двумя выходами ПИД - регулятора (2 мс на выход ПИД - регулятора) для подавления быстрого изменения выхода ПИД - регулятора и стабилизации работы частотного преобразователя.

С0-21 и С0-22 соответственно соответствуют максимальной абсолютной величине отклонения выхода в прямом направлении и в обратном направлении.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-23	Время фильтрации обратной связи ПИД - регулятора	0.00c~60.00c	0.00c

C0-24	Время выходного фильтра ПИД -	0.00c~60.00c	0.00c
	регулятора		

С0-23 используется для фильтрации обратной связи ПИД - регулятора, что помогает снизить помехи обратной связи, но замедляет реакцию системы замкнутого контура.

C0-24 используется для фильтрации выходной частоты ПИД - регулятора, что помогает ослабить внезапное изменение выходной частоты частотного преобразователя, но замедляет реакцию системы замкнутого контура.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-25	Идентификатор потери обратной связи ПИД - регулятора.	0,0%: отсутствие оценки потери обратной связи 0,1% ~ 100,0%	0.0%
C0-26	Время обнаружения потери обратной связи ПИД - регулятора.	0.0c ~ 20,0	0.0c

Эти параметры используются для оценки потери обратной связи ПИД - регулятора.

Если обратная связь ПИД - регулятора меньше, чем значение C0-25, а длительное время превышает значение C0-26, преобразователь частоты сообщает об ошибке Err 31 и действует в соответствии с выбранным действием защиты от повреждений.

Код	Название параметра	Диапазон настройки	По умолчанию
C0-27	ПИД - операция при остановке	0: нет операции ПИД - регулирования при остановке 1: ПИД –о перация при остановке	0

Он используется в целях выбора, следует ли продолжать операцию ПИД или нет. Как правило, установка ПИД прекращается, когда преобразователь частоты останавливает работу.

5.16 Группа С1: Многофункциональный режим

Многофункциональность SL9 характеризуется множеством функций. Помимо многоскоростного свойства, он может использоваться как генератор настроек источника напряжения V / F и источника сигнала процесса ПИД. Кроме того, мультифункция является относительным значением.

Простая функция ПЛК отличается от пользовательской программируемой функции SL9. Простой ПЛК может выполнять только комбинацию многофункциональных функций.

Код	Название параметра	Диапазон настройки	По умолчанию
C1-00	Многофункциональный 0	-100.0%~100.0%	0.0%
C1-01	Многофункциональный 1	-100.0%~100.0%	0.0%
C1-02	Многофункциональный 2	-100.0%~100.0%	0.0%
C1-03	Многофункциональный 3	-100.0%~100.0%	0.0%
C1-04	Многофункциональный 4	-100.0%~100.0%	0.0%

C1-05	Многофункциональный 5	-100.0%~100.0%	0.0%
C1-06	Многофункциональный 6	-100.0%~100.0%	0.0%
C1-07	Многофункциональный 7	-100.0%~100.0%	0.0%
C1-08	Многофункциональный 8	-100.0%~100.0%	0.0%
C1-09	Многофункциональный 9	-100.0%~100.0%	0.0%
C1-10	Многофункциональный 10	-100.0%~100.0%	0.0%
C1-11	Многофункциональный 11	-100.0%~100.0%	0.0%
C1-12	Многофункциональный 12	-100.0%~100.0%	0.0%
C1-13	Многофункциональный 13	-100.0%~100.0%	0.0%
C1-14	Многофункциональный 14	-100.0%~100.0%	0.0%
C1-15	Многофункциональный 15	-100.0%~100.0%	0.0%

Многофункциональным может быть источник настройки частоты, разделенное напряжение на силу V / F и $\Pi U \Pi$ процесса. Мультифункция является относительной величиной и колеблется от -100,0% до 100,0%.

В качестве источника частоты этот процент является относительным по отношению к максимальной частоте. В качестве источника напряжения, разделенного на силу V / F, это процентное отношение относительно номинального напряжения двигателя. В качестве источника настройки ПИД процесса он не требует преобразования.

Многофункциональность может быть переключена на основе различных состояний клемм DI. Подробнее см. Описания группы b3.

Код	Название параметра	Диапазон настройки	По умолчанию
C1-16	Многофункциональ ный источник 0	0: Установлено C1-00 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: PID 6: Установлено заданной частотой (b0-12), измененной с помощью терминала UP / DOWN	0

Он определяет канал настройки многофункционального значения 0. Вы можете выполнять удобное переключение между установочными каналами. Когда в качестве источника частоты используется многофункциональный или простой ПЛК, переход между двумя частотными источниками может быть легко осуществлен.

5.17 Группа С2: простой ПЛК

Код	Название параметра	Диапазон настройки	По умолчанию
C2-00	Простой режим работы ПЛК	0: Остановить после того, как преобразователь частоты проработает один цикл 1: Сохранять	0

	конечные значения после того, как преобразователь частоты проработает один цикл	
	2: Повторить после того, как преобразователь частоты проработает один цикл	

0: Остановить после того, как преобразователь частоты проработает один цикл

Преобразователь частоты останавливается после запуска одного цикла и не запускается до получения другой команды.

1: Сохранять конечные значения после того, как преобразователь частоты проработает один цикл

Частотный преобразователь сохраняет конечную рабочую частоту и направление после запуска одного цикла.

2: Повторить после того, как преобразователь частоты проработает один цикл

Частотный преобразователь автоматически запускает следующий цикл после запуска одного цикла и не останавливается до получения команды стоп.

Простой ПЛК может служить либо источником частоты, либо отдельным источником напряжения V / F.

В случае использования простого ПЛК в качестве источника частоты, значения параметров С1-00 ~ С1-15, которые могут быть как положительными, так и отрицательными, определяют направление работы преобразователя частоты. Если значения параметра отрицательные, это означает, что преобразователь частоты работает в обратном направлении.

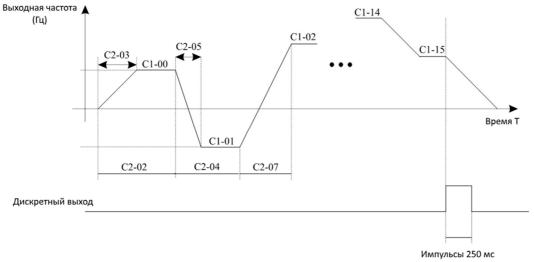


Диаграмма 5-28 Использование ПЛК в качестве источника частоты

Код	Название параметра	Диапазон настройки	По умолчанию
C2-01	Выбор простой записи ПЛК	Разряд единиц: запись об исчезновении питания. 0: нет записи после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки. 0: нет записи после остановки 1: запись после остановки 1: запись после остановки	

Запись ПЛК об отключении питания указывает на то, что преобразователь частоты запоминает этап ПЛК и частоту работы перед сбоем питания, преобразователь частоты будет продолжать работать с запомненным этапом после включения питания. Если цифра устройства установлена на 0, преобразователь частоты перезапускает процесс ПЛК после его повторного включения. Запись ПЛК об остановке указывает на то, что преобразователь частоты записывает рабочий цикл ПЛК и рабочую частоту остановки, а преобразователь частоты будет продолжать работать с записанного отрезка после повторного включения питания.

Если цифра разряда десятков установлена на 0, преобразователь частоты перезапустит процесс ПЛК после повторного включения питания

	рного включения питания.	Т	_
Код	Название параметра	Диапазон установок	По умолчанию
C2-02	Время работы простого сегмента ПЛК 0	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-03	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-04	Время работы простого сегмента ПЛК 1	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-05	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-06	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-07	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-08	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-09	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-10	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-11	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-12	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-13	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-14	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-15	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-16	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-17	Время передачи /	0~3	0

	замедления обычного сегмента ПЛК 0		
C2-18	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-19	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-20	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-21	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-22	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-23	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-24	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-25	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-26	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-27	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-28	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-29	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-30	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-31	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-32	Время работы простого сегмента ПЛК	0.0~ 6553.5 с (ч)	0.0с (ч)
C2-33	Время передачи / замедления обычного сегмента ПЛК 0	0~3	0
C2-34	Единица времени простого запуска ПЛК	0: s (секунда) 1: h (час)	0

5.18 Группа С3: Параметры поддержания постоянного адвления в системе водоснабжения

Группа становится доступной при С0-00 = 7.

C2 00	С3-00 Уставка давления(МПа)		По умолч.	0.000МПа	
C3-00	Диапазо)H	0.000~60.000МПа		
C3-01	Макс. давление полной шкалы (МПа)		По умолч.	1.000МПа	
C3-01	Диапазо	Н	0.000~60.000МПа		
C3-02	Нижний пре	дел да	вления (МПа)	По умолч.	0.001МПа
C3-02	Диапазо	Н	0.000~60.000МПа		
C3-03	Верхний пре	едел да	вления (МПа)	По умолч.	1.000МПа
C3-03	Диапазо	Н	0.000~60.000МПа		
C3-04	Давление пр	осыпа	ния (МПа)	По умолч.	0.001МПа
C3-04	Диапазо	Н	0.000~60.000МПа		
C3-05	Давление за	сыпані	ия (МПа)	По умолч.	1.000МПа
C3-03	Диапазо	Н	0.000~60.000МПа		
	Время превы	ышения	я давлением обратной связи	По умони	10c
C3-06	действитель	ного д	авления	По умолч.	100
	Диапазо)H	0~250c		_
C3-07	Частота засы	ыпания		По умолч.	20.00HZ
C3-07	Диапазо	Н	0.00~макс. частота		
C3-08	Время сниж	ения д	авлением давления засыпания	По умолч.	10c
C3-08	Диапазо	Н	0~250c		
	Выбор режи	ма зас	ыпания	По умолч.	0
C3-09	Пионозон	0	Засыпание по частоте		
	Диапазон	1	Засыпание по давлению	·	

5.19 Группа d0: Параметры двигателя 1

Код	Название параметра	Режим настройки	По умолчанию
d0-00	Номинальная мощность двигателя	0.1кВт~1000.0 кВт	В зависимости от модели
d0-01	Номинальное напряжение двигателя	1B~2000 B	В зависимости от модели
d0-02	Номинальный ток двигателя	$0,01A \sim 655,35 \text{ A}$ (мощность преобразователя частоты $\leq 55 \text{ кBT}$) $0,1A \sim 6553,5 \text{ A}$ (мощность преобразователя частоты $\geq 75 \text{ кBT}$)	В зависимости от модели
d0-03	Номинальная частота двигателя	0.01 Гц ~ максимальная частота	50.00Гц
d0-04	Номинальная частота вращения двигателя	1 об / мин ~ 65535 об / мин	В зависимости от модели

Задайте параметры в соответствии с номинальными данными двигателя независимо от того, принимается управление V / F или векторное управление.

Для достижения лучшей производительности V / F или векторного управления требуется автонастройка двигателя. Точность автонастройки двигателя зависит от правильной настройки параметров заводской таблицы с паспортными данными.

Код	Название параметра	Режим настройки	По умолчанию
d0-05	Сопротивление	0,001 Ом ~ 65,535 Ом	В зависимости от

	статора (асинхронный двигатель)	(мощность преобразователя частоты менее 55 кВт) 0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	модели
d0-06	Сопротивление ротора (асинхронный двигатель)	0,001 Ом ~ 65,535 Ом (мощность преобразователя частоты менее 55 кВт) 0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	В зависимости от модели
d0-07	Индуктивный реактанс рассеяния (асинхронный двигатель)	0,1 мГн ~ 6553,5 мГн (мощность преобразователя частоты составляет 55 кВт) 0.01мГн ~ 655.35 мГн (мощность преобразователя частоты ≥75 кВт)	В зависимости от модели
d0-08	Взаимное индуктивное сопротивление (асинхронный двигатель)	$0,1$ мГн ~ $6553,5$ мГн (мощность преобразователя частоты составляет 55 кВт) 0.01 мГн ~ 655.35 мГн (мощность преобразователя частоты ≥ 75 кВт)	В зависимости от модели
d0-09	Ток холостого хода (асинхронный двигатель)	0,01А ~ d0-02 (Мощность преобразователя частоты ≤55 кВт) От 0.1А до d0-02 (мощность преобразователя частоты ≥75 кВт)	В зависимости от модели

Параметры в $d0-05 \sim d0-09$ являются асинхронными параметрами двигателя. Эти параметры недоступны в заводской таблице двигателя и получены с помощью автонастройки двигателя. Только $d0-05 \sim d0-07$ можно получить с помощью автонастройки статического двигателя. Через полную автонастройку двигателя можно получить последовательность фаз энкодера и петлю тока PI помимо параметров в $d0-05 \sim d0-09$.

Когда изменяется «Номинальная мощность двигателя» (d0-00) или «Номинальное напряжение двигателя» (d0-01); преобразователь частоты автоматически восстанавливает значения d0-05 ~ d0-09, чтобы восстановить настройку этих 5 параметров в соответствии с обычным

асинхронным двигателем серии Ү.

Если невозможно выполнить автонастройку двигателя на месте, вручную задайте значения этих параметров в соответствии с данными, предоставленными производителем.

Код	Название параметра	Режим настройки	По умолчанию
d0-15	Сопротивление статора (синхронный двигатель)	0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	
d0-16	Индуктивность вала D (синхронный двигатель)	0,01 мГн ~ 655,35 мГн (мощность преобразователя частоты менее 55 кВт) 0,001 ~ 65,535 мГн (мощность преобразователя частоты ≥75 кВт)	
d0-17	Индуктивность вала Q (синхронный двигатель)	0,01 мГн ~ 655,35 мГн (мощность преобразователя частоты менее 55 кВт) 0,001 мГн ~ 65,535 мГн (мощность преобразователя частоты ≥75 кВт)	
d0-18	Противодействующа я ЭДС (синхронный двигатель)	0,1 B ~ 6553,5 B	

D0-15 ~ d0-18 - синхронные параметры двигателя. Эти параметры недоступны в паспортной таблице большинства синхронных двигателей и могут быть получены с помощью «Автонастройки синхронного двигателя без перестройки».

Через «Синхронную автонастройку с автоматической перестройкой» можно получить только последовательность фазировки энкодера и угол установки.

Вы также можете напрямую установить параметры на основе данных, предоставленных производителем синхронных двигателей.

	d0-19	Импульсы энкодера за оборот	1~32767	1024
--	-------	--------------------------------	---------	------

Этот параметр используется для установки импульсов на оборот (PPR) импульсного энкодера ABZ или UVW. В режиме VC двигатель может работать некорректно, если этот параметр установлен неправильно.

Код	Название параметра	Режим настройки	По умолчанию
d0-20	Тип энкодера	0: импульсный энкодер ABZ 1: Преобразователь 2: импульсный энкодер UVW 3: Резервный	0

	4: Проводной датчик UVW	

SL9 поддерживает несколько типов энкодеров. Для разных типов энкодеров требуются разные PG-карты. Выберите подходящую карту PG для используемого энкодера. Любой из пяти типов энкодеров применим к синхронному двигателю. Для асинхронного двигателя применимы только импульсный датчик и преобразователь ABZ.

После завершения установки платы PG установите этот параметр правильно на основе фактических условий. В противном случае преобразователь частоты может работать неправильно.

Код	Название параметра	Режим настройки	По умолчанию
d0-21	Последовательность фаз А / В импульсного датчика ABZ	0: Вперед 1: Отложить	0

Этот параметр действителен только для инкрементного энкодера ABZ (d0-20=0) и используется для установки последовательности фаз A / B инкрементного энкодера ABZ.

Он действителен как для асинхронного двигателя, так и для синхронного двигателя. Последовательность фаз A / В можно получить с помощью «Автонастройки асинхронного двигателя» или «Автонастройки синхронного двигателя без перестройки».

Код	Название параметра	Режим настройки	По умолчанию
d0-22	Угол установки энкодера	0.0°~359.9°	0.0°

Этот параметр применим только к синхронному двигателю. Он действителен для импульсного энкодера ABZ, импульсного энкодера UVW, преобразователя и защитного устройства UVW, но недействительного для SIN / COS - энкодера.

Его можно получить с помощью синхронного автоматического токарного включения двигателя или автоматического отключения при загрузке. После завершения установки синхронного двигателя значение этого параметра должно быть получено путем автонастройки двигателя. В противном случае двигатель не сможет работать должным образом.

Код	Название параметра	Режим настройки	По умолчанию
d0-23	U, V, W - последовательность фаз UVW - энкодера	0: Вперед 1: Инвертировать	0
d0-24	Уклонение угла энкодера UVW	0.0°~359.9°	0.0°

Эти два параметра действительны только тогда, когда кодер UVW применяется к синхронному двигателю. Они могут быть получены с помощью автоматической перестройки синхронного двигателя с нулевой нагрузкой или автоматической перестройки с нагрузкой. После завершения установки синхронного двигателя значения этих двух параметров должны быть получены с помощью автонастройки двигателя.

В противном случае двигатель не сможет работать должным образом.

Код	Название параметра	Режим настройки	По умолчанию
d0-28	Число пар полюсов преобразователя	1~99	1

Если применяется преобразователь, установите правильно количество пар полюсов.

- 3	seem upmwemmeren upeec	· [
	Код	Название параметра	Режим настройки	По умолчанию
	d0-29	повреждения	0.0 с: никаких действий 0.1c ~ 10.0c	0.0c

Этот параметр используется для установки времени обнаружения, которое приводит к разрыву

проводов. Если он установлен на 0.0 с, преобразователь частоты не обнаруживает ошибку пробоя датчика энкодера. Если время продолжительности разрыва проводов датчика, обнаруженного преобразователем частоты, превысит время, установленное в этом параметре, преобразователь частоты сообщает об ошибке Err20.

Код	Название параметра	Режим настройки	По умолчанию
d0-30	Выбор автонастройки двигателя 1	0: нет автоматической настройки 1: статическая автонастройка асинхронного двигателя 2: полная автонастройка асинхронного двигателя 3: полная статическая автонастройка синхронного двигателя	0

0: нет автоматической настройки

Автонастройка запрещена.

1: статическая автонастройка асинхронного двигателя

Она применима к случаям, где полная автонастройка не может быть выполнена, поскольку асинхронный двигатель нельзя отключить от нагрузки.

Прежде чем выполнять статическую автонастройку, сначала настройте параметры двигателя и параметры заводской таблицы двигателя $d0-00 \sim d0-04$. Преобразователь частоты будет получать параметры $d0-05 \sim d0-07$ путем статической автонастройки.

Руководство к действию: установите этот параметр равным 1 и нажмите клавишу RUN. Затем преобразователь частоты запустит статическую автонастройку.

2: полная автонастройка асинхронного двигателя

Чтобы выполнить этот тип автонастройки, убедитесь, что двигатель отсоединен от нагрузки. Во время полной автоматической настройки частотный преобразователь выполнит сначала статическую автонастройку, а затем ускорится до 80% от номинальной частоты двигателя в течение времени разгона, установленного в b0-21. Частотный преобразователь продолжит работать в течение определенного периода времени, а затем замедлится, чтобы остановиться вместе со временем замедления, установленным в b0-22.

Перед выполнением полной автонастройки, первым делом, правильно установите тип двигателя, параметры заводской таблицы двигателя b0-00 и $d0-00 \sim d0-04$, «Тип датчика» (d0-20) и «Импульсы энкодера за оборот» (d0-19).

Преобразователь частоты получит параметры двигателя $d0-05 \sim d0-09$, «Последовательность фаз A / B для инкрементного энкодера ABZ» (d0-21) и параметры ПИ регулятора тока векторного управления $d1-10 \sim d1-13$ путем полного автоматической перестройки.

Руководство к действию: установите этот параметр равным 2 и нажмите клавишу RUN. Затем преобразователь частоты начнет полную автонастройку.

Примечание: Автонастройка двигателя может быть выполнена только в режиме управления с панели.

5.20 Группа d1: параметры векторного управления двигателя 1

Функциональные коды группы d1 действительны только для векторного управления двигателем 1. Это недопустимо для параметров двигателя 2 или управления двигателем 1 В / F.

Код	Название параметра	Режим настройки	По умолчанию
d1-00	Выбор скорости / крутящего момента	0: Управление скоростью 1: Управление крутящим моментом	0

Он используется для выбора режима управления преобразователем частоты: контроля скорости

или контроля крутящего момента.

обращен к значению d1-00.

SL9 обеспечивает терминал ввода двумя связанными с крутящим моментом функциями,, функцией 21 (управление крутящим моментом запрещено) и функцией 20 (регулирование скорости / переключение крутящего момента). Два терминала ввода должны использоваться вместе с d1-00 для обеспечения управления скоростью / переключением крутящего момента. Если терминал ввода, установлен с помощью функции 20 (управление скоростью / переключением крутящего момента), выключен, режим управления определяется параметром

Однако, если терминал ввода с функцией 21 (запрет крутящего момента запрещен) включен, преобразователь частоты налажен на работу в режиме управления скоростью.

d1-00. Если терминал ввода, установлен с помощью функции 20, включен, режим управления

Код	Название параметра	Режим настройки	По умолчанию
d1-01	Пропорциональное усиление петли скорости 1 (Kp1)	0.01~10.00	0.30
d1-02	Интегральное время цикла контура 1 (Ti1)	0.01c~10.00c	0.50c
d1-03	Частота переключения	0.00 ~ d1-06	5.00 Гц
d1-04	Пропорциональное усиление петли скорости 2 (Kp2)	0.01~10.00	0.20
d1-05	Интегральное время цикла контура 2 (Ti2)	0.01c~10.00c	1.00c
d1-06	Частота переключения 2	d1-03 ~ максимальная выходная частота	10.00 Гц

Параметры PI контура скорости изменяются в зависимости от частоты работы частотного преобразователя.

- Если рабочая частота меньше или равна «Частоте переключения 1» (d1-03), параметры РІ контура скорости равны d1-01 и d1-02.
- Если рабочая частота больше или равна «Частоте переключения 2» (d1 06), параметры РІ контура скорости равны d1-04 и d1-05.
- Если рабочая частота находится между d1-03 и d1-06, параметры PI контура скорости достигаются благодаря линейному переключению между двумя группами параметров PI, как показано на диаграмме 6-30.

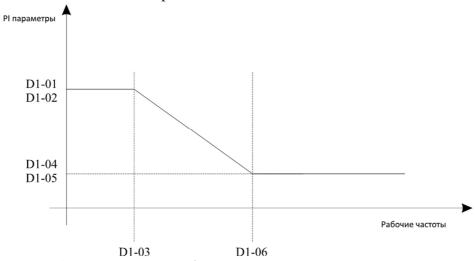


Диаграмма 5-30. Связь между рабочими частотами и параметрами РІ

Частотные характеристики скорости в векторном управлении можно отрегулировать, настроив пропорциональный коэффициент усиления и интегральное время частотного регулятора.

Чтобы добиться более быстрого реагирования системы, следует увеличить пропорциональный коэффициент усиления и уменьшить интегральное время. Нужно иметь в виду, что это может привести к осцилляции системы. Рекомендуемый способ корректировки следующий:

Если заводская настройка не соответствует требованиям, следует внести правильную корректировку. Сначала, следует увеличить пропорциональный коэффициент усиления, чтобы убедиться в том, что система не колеблется, а затем уменьшить интегральное время, чтобы обеспечить быстрый ответ системы и незначительную перегрузку.

Примечание. Неправильная установка параметров РІ может привести к слишком большому перерегулированию по скорости, а в случае, когда перегрузка уменьшается, может произойти

сбой вследствие избыточного напряжения.

Код	Название параметра	Режим настройки	По умолчанию
d1-07	Усиление скольжения	50%200%	100%
d1-09	Усиление превышения в режиме управления моментом	0~200	64
d1-10	Источник верхнего предела момента в режиме управления скоростью	0: d1-16 1: Al1 2: Al2 3: Al3 4: Импульсы (HDI) 5: Ком-порт	0
d1-11	Предел эл. момента	0.0%~200.0%	Предел эл. момента

Эти данные - текущие параметры PI для векторного управления. Эти параметры автоматически получают с помощью «Автонастройки асинхронного двигателя» или «Автонастройки синхронного двигателя без нагрузки» и не требуют изменений.

Величина интегрального регулятора токовой петли представляет собой интегральное усиление, а не интегральное время. Обратите внимание, что слишком большой коэффициент усиления РІ токовой петли может привести к колебанию всей системы регулирования.

Поэтому, когда колебания тока или колебания крутящего момента достигают большого значения, здесь следует вручную уменьшить пропорциональный коэффициент усиления или

интегральный коэффициент усиления.

Код	Название параметра	Диапазон настройки	По умолчанию
d1-14	Пропорциональное усиление петли тока возбуждения	0~30000	2000
d1-15	Интегральное усиление токовой петли возбуждения	0~30000	1300
d1-16	Пропорциональное усиление токовой петли	0~30000	2000
d1-17	Интегральное усиление токовой петли	0~30000	1300

В режиме управления скоростью максимальный выходной крутящий момент преобразователя

частоты ограничивается d1-14. Если верхний предел крутящего момента представляет собой аналоговый, импульсный или коммуникационный параметром, 100% настройки соответствует значению d1-16, a 100% от значения d1-16 соответствует номинальному крутящему моменту преобразователя частоты.

Подробнее о настройках AI1, AI2 и AI3 смотрите в описании кривых AI. Подробнее о настройке импульсов смотрите в Описании b5-00 ~ b5-04.

Код	Название параметра	Диапазон настройки	По умолчанию
d1-18	Интегральное свойство петли контроля скорости	0: Интегральное разделение не действует 1: Интегральное разделение действует	0

Для СВС (SVC) он используется для регулирования точности скорости вращения двигателя. Когда двигатель с нагрузкой работает с очень низкой скоростью, следует увеличить значение этого параметра; когда двигатель с нагрузкой работает с очень высокой скоростью, следует уменьшить значение этого параметра.

Для ФВС (FVC) он используется для регулирования выходного тока частотного преобразователя с одинаковой нагрузкой.

Код	Название параметра	Диапазон настройки	По умолчанию
d1-21	Коэфф. макс. вых. напряжения	100%~110%	105%
d1-22	Максимальный коэффициент момента в зоне ослабления поля	50%~200%	100%
d1-24	Макс. коэфф. крутящего момента в области ослабления поля	50%~200%	100%
d1-26	Цифровая настройка крутящего момента в управлении крутящим моментом	-200.0%~200.0%	150.0%
d1-28	Прямая максимальная частота в управлении крутящим моментом	0,00 Гц ~ максимальная частота (b0-13)	50.00 Гц
d1-29	Реверсивная максимальная частота в управлении крутящим моментом	0,00 Гц ~ максимальная частота (b0-13)	50.00 Гц

Эти два параметра используются для установки максимальной частоты в прямом или обратном вращении в режиме управления крутящим моментом.

Если, при управлении крутящим моментом, крутящий момент нагрузки меньше крутящего момента двигателя, частота вращения двигателя будет непрерывно расти. Чтобы избежать отключения механической системы, максимальная скорость вращения двигателя должна быть ограничена в управлении крутящим моментом.

Можно осуществлять непрерывное изменение максимальной частоты в управлении крутящим моментом динамически, контролируя верхний предел частоты.

Код	Название параметра	Диапазон настройки	По умолчанию
d1-30	Время разгона в управлении крутящим моментом	0.00c~120.00c	0.10c

При управлении крутящим моментом разница между крутящим моментом двигателя и крутящим моментом нагрузки определяет скорость изменения скорости двигателя и нагрузку. Частота вращения двигателя может быстро изменяться, что может привести к шуму или слишком большому механическому напряжению. Настройка времени разгона / торможения в управлении крутящим моментом плавно изменяет скорость вращения двигателя. Однако в системах, требующих быстрого ответа крутящего момента, следует установить время разгона / торможения при регулировании крутящего момента до 0,00 с. Например, два частотных преобразователя подключены для обеспечения одинаковой нагрузки. Для того, чтобы сбалансировать распределение нагрузки, следует установить один частотный преобразователь как ведущий в управлении скоростью, а другой - как подчиненный в управлении крутящим моментом. Ведомый получает выходной крутящий момент ведущего устройства в качестве команды крутящего момента и должен быстро следовать за ведущим устройством. В этом случае, время разгона / торможения ведомого в управлении крутящим моментом устройства устанавливается как 0,0 с.

5.21 Группа d2: Параметры управления двигателем 1 V / F

Группа d2 действительна только для управления V / F.

Режим управления V / F применим к системам с низкой нагрузкой (вентилятор или насос) или системам, в которых один частотный преобразователь работает с несколькими двигателями или существует большая разница между мощностью преобразователя частоты и мощностью пвигателя.

Код	Название параметра	Диапазон настройки	По умолчанию
d2-00	Настройка кривой V / F	0: Линейный V / F 1: Многопунктовый V / F 2: Квадратный V / F 3: V / F с мощностью 1,2 4: V / F с мощностью 1,4 6: V / F с мощностью 1,6 8: V / F с мощностью 1,8 10: Полное разделение V / F 11: Разделение V / F	0

0: Линейный V / F

Он применим к стандартной нагрузке при постоянном крутящем моменте.

1: Многопунктовый V / F

Он применим к специальной нагрузке, такой как дегидратор и центрифуга. Любую зависимость кривой V / F можно получить, установив параметры $d2-03 \sim d2-08$.

2: Квадратный V / F

Он применим к центробежным нагрузкам, таким как вентилятор и насос.

3 ~ 8: Кривая V / F между линейнымV / F и квадратным V / F

10: Полное разделение V / F

В этом режиме выходная частота и выходное напряжение частотного преобразователя являются независимыми. Выходная частота определяется источником частоты, а выходное напряжение определяется «Источником напряжения для разделения V / F» (d2-12).

Он применим для индукционного нагрева, обратного питания и управления двигателем с крутящим моментом.

11: Разделение V / F

В этом режиме V и F- пропорциональны, а пропорциональное соотношение может быть установлено в d2-12. Связь между V и F также связана с «номинальным напряжением двигателя» и «номинальной частотой двигателя».

Предположим, что вход источника напряжения X (0% ~ 100%), соотношение между V и F:

 $V / F = 2 \times X \times ($ номинальное напряжение двигателя) / (номинальная частота двигателя)

Код	Название параметра	Диапазон настройки	По умолчанию
d2-01	Повышение крутящего момента	0,0% (автоматическое увеличение крутящего момента) 0,1% ~ 30,0%	4.0%
d2-02	Граничная частота крутящего момента	0,0% ~ 80,0% Фактическая граничная частота = Номинальная частота двигателя * d2-02	30.0%

Для того, чтобы компенсировать низкочастотные характеристики крутящего момента управления V / F, можно увеличить выходное напряжение частотного преобразователя при низкой частоте изменив d2-01.

Если усиление крутящего момента установлено слишком большим, двигатель легко перегревается, а частотный преобразователь легко переносит ток.

Если нагрузка велика и пускового крутящего момента двигателя недостаточно, следует увеличить значение d2-01. Если нагрузка мала, следует уменьшить значение d2-01. Если он установлен на 0.0, частотный преобразователь выполняет автоматическое повышение крутящего момента.

В этом случае преобразователь частоты автоматически вычисляет значение повышения крутящего момента на основе параметров двигателя, включая сопротивление статора.

D2-02 определяет частоту, при которой действует повышение крутящего момента. При превышении этой частоты повышение крутящего момента становится недействительным, как показано на следующем рисунке.

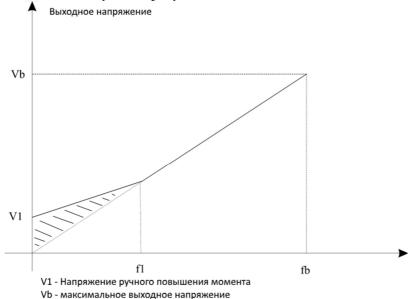
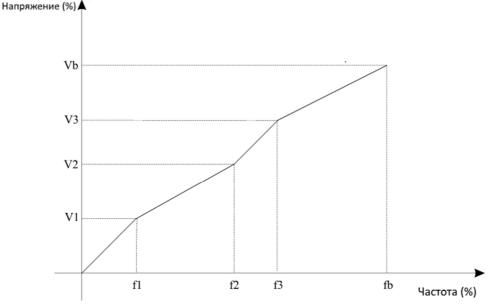


Диаграмма 5-31 Ручное повышение крутящего момента

Частота отсечки ручного повышения момента

fb - номинальная рабочая частота


Код	Название параметра	Диапазон настройки	По умолчанию
d2-03	Многоточечная частота V / F 1 (F1)	0.00 Γц ~ d2-05	0.00 Гц
d2-04	Многоточечное напряжение V / F 1	0.0%~100.0%	0.0%

	(V1)		
d2-05	Многоточечная частота V / F 2 (F2)	d2-03 к d2-07	0.00 Гц
d2-06	Многоточечное напряжение V / F 2 (V2)	0.0%~100.0%	0.0%
d2-07	Многоточечная частота V / F 3 (F3)	d2-05 ~ максимальная частота	0.00 Гц
d2-08	Многоточечное напряжение V / F 3 (V3)	0.0%~100.0%	0.0%

Когда d2-00 установлено на 1, эти шесть параметров используются для определения многоточечной кривой V / F.

Многоточечная кривая V / F устанавливается на основе характеристики нагрузки двигателя. Соотношение между напряжениями и частотами: V1 <V2 <V3, F1 <F2 <F3. На диаграмме 6-32 показана настройка многоточечной кривой V / F.

При низкой частоте более высокое напряжение может привести к перегреву двигателя или даже к выгоранию, а также вызвать потерю скорости сверхтока частотного преобразователя или защиту от сверхтоков.

V1...V3 - 1-я, 2-я и 3-я точка в многоточечной F/V кривой 📑

Vb - Номинальное напряжение мотора

f1...f3 - 1-я, 2-я и 3-я доля частоты

fb - номинальная частота мотора

Диаграмма 5-32 Настройка многоточечной кривой V / F

Код	Название параметра	Диапазон настройки	По умолчанию
d2-09	Коэффициент компенсации скольжения V / F	0.0%~200.0%	0.0%

Этот параметр действителен только для асинхронного двигателя.

Он может компенсировать сдвиг скорости вращения асинхронного двигателя при увеличении нагрузки двигателя, стабилизируя скорость двигателя в случае изменения нагрузки.

Если этот параметр установлен на 100%, это означает, что компенсация, при которой двигатель несет номинальную нагрузку, является номинальным скольжением ротора. Номинальное скольжение ротора автоматически достигается преобразователем частоты путем расчета на основе номинальной частоты двигателя и номинальной частоты вращения двигателя в группе

d0. Как правило, если скорость вращения двигателя отличается от установленной скорости, следует слегка отрегулировать этот параметр.

Код	Название параметра	Диапазон настройки	По умолчанию
d2-10	Усиление подавления колебаний V / F	0~100	0
d2-11	Усиление подавления колебаний V / F	0~100	40

Метод настройки этого параметра должен быть установлен как минимальный для эффективного подавления колебаний, чтобы избежать негативного эффекта при работе V / F. В случае, если колебания двигателя отсутствуют, следует установить коэффициент усиления на 0. Только при наличии явного колебания двигателя вы можете увеличить коэффициент усиления. Чем больше коэффициент усиления, тем очевиднее эффект подавления колебаний.

Когда используется функция подавления колебаний, должны быть установлены параметры номинального тока двигателя и ток холостого хода, в ином случае эффект подавления колебаний не удастся.

Код	Название параметра	Диапазон настройки	По умолчанию
d2-12	Коэфф. усиления подавления колебаний	0~4	3
d2-13	Источник напряжения для разделения V / F	0: цифровая настройка (d2-13) 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: Многофункциональный 6: Простой ПЛК 7: ПИД 8: Настройка связи (Примечание: 100.0% соответствует рейтингу напряжение двигателя)	0
d2-14	Цифровая настройка напряжения для разделения V / F	0 В ~ номинальное напряжение двигателя	0 B

Разделение V / F обычно применимо к данным узлам, таким как индукционный нагрев, инверсный источник питания и управление крутящим моментом двигателя.

Если включено управление V / F, выходное напряжение может быть установлено в d2-13 либо аналоговым или многофункциональным, либо простым ПЛК, ПИД или с помощью связи.

Если вы устанавливаете выходное напряжение с помощью нецифровой настройки, 100% настройки будет соответствовать номинальному напряжению двигателя. Если задан отрицательный процент, его абсолютное значение используется как действующее значение величины.

0: Цифровая настройка (d2-13)

Выходное напряжение устанавливается непосредственно в d2-13.

1: AI1;

2: AI2;

3: AI3

Выходное напряжение устанавливается аналоговыми входными клеммами.

4: Настройка импульсов (HDI)

Выходное напряжение устанавливается с помощью импульсов терминала HDI.

Спецификация настройки импульса: диапазон напряжения 9 В ~ 30 В, диапазон частот 0 кГц ~

100 кГп

5: Многофункциональный

6: Простой ПЛК

Если источником напряжения является простой режим ПЛК, для определения выходного напряжения настройки в группе FC должны быть установлены параметры.

7: ПИД

Выходное напряжение генерируется на основе замкнутого контура ПИД.

Подробнее смотрите Описание ПИД в группе СО.

8: Настройка связи

Выходное напряжение устанавливается хост-компьютером посредством связи.

Источник напряжения для разделения V / F выбирается аналогично выбору источника частоты. Для более подробной информации смотрите b0-03 (основная спецификация источника X). 100,0% от настроек в каждом режиме соответствует номинальному напряжению двигателя. Если соответствующее значение отрицательное, используется его абсолютное значение.

Код	Название параметра	Диапазон настройки	По умолчанию
d2-15	Время нарастания напряжения V / F-разделения	0.0с ~ 1000.0с Примечание: Это указывает на время, когда напряжение возрастает от 0 В ~ номинального напряжения двигателя.	0.0c

d2-14 указывает время, необходимое для того, чтобы выходное напряжение повысилось от 0 В до номинального напряжения двигателя, изображенного как t1 на следующем рисунке.

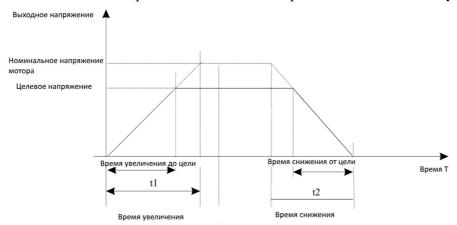


Диаграмма 5-33 Напряжение разделения V / F

5.22 Группа d6: Параметры оптимизации управления

Код	Название параметра	Диапазон настройки	По умолчанию
d6-00	Несущая частота	0,5 кГц ~ 16,0 кГц	Зависит от модели

Он используется для настройки несущей частоты частотного преобразователя, что помогает снизить шум двигателя, избежать резонанса механической системы, уменьшить ток утечки на землю и помехи, создаваемые частотным преобразователем.

Если несущая частота мала, выходной ток имеет высокую гармоническую волну, двигатель увеличит потери мощности и повысит температуру.

Если несущая частота выше, мощность и температура двигателя будут снижаться. Тем не менее, преобразователь частоты будет увеличивать затраты мощности, температуру и количество помех.

Регулировка несущей частоты будет влиять на аспекты, перечисленные в следующей таблице.

Таблица 6-1. Влияние изменений несущей частоты

Несущая частота	Низкая →	Высокая
-----------------	----------	---------

Моторный шум	Большой →	Маленький
Выходной ток	Плохой→	Хороший
Температура двигателя	Высокая→	Низкая
Преобразователь частоты	Низкая→	Высокая
Ток утечки	Маленький→	Большой
Внешняя радиационная помеха	Маленькая→	Большая

Заводская установка несущей частоты зависит от мощности преобразователя частоты. Если вам необходимо изменить несущую частоту, обратите внимание на то, что если заданная несущая частота выше заводской, это приведет к повышению температуры радиатора преобразователя частоты. В этом случае вам необходимо снизить частоту преобразователя.

В противном случае, преобразователь частоты может перегреться и подать сигнал тревоги.

Код	Название параметра	Диапазон настройки	По умолчанию
d6-02	Режим модуляции PWM	0: Асинхронная модуляция 1: Синхронная модуляция	0

Этот параметр действителен только для управления V / F.

Синхронная модуляция указывает на то, что несущая частота изменяется линейно с изменением выходной частоты, гарантируя, что отношение несущей частоты к выходной частоте останется неизменным. Синхронная модуляция обычно используется при высокой выходной частоте, что помогает улучшить качество выходного напряжения.

При низкой выходной частоте (100 Гц или ниже) синхронная модуляция не требуется. Это связано с тем, что отношение несущей частоты к выходной частоте все еще велико, а асинхронная модуляция является более высокой при такой низкой рабочей частоте.

Синхронная модуляция вступает в силу только тогда, когда рабочая частота превышает 85 Гц. Если частота ниже 85 Гц, действует асинхронная модуляция.

Код	Название параметра	Диапазон настройки	По умолчанию
d6-03	Регулировка несущей частоты с температурой	0: Нет 1: Да	1

Он используется для установки того, настроена ли несущая частота и зависит ли она от температуры. Частотный преобразователь автоматически снижает несущую частоту при обнаружении высокой температуры радиатора. Частотный преобразователь восстанавливает несущую частоту до установленного значения, когда температура радиатора становится нормальной. Эта функция используется с целью уменьшения аварийных сигналов перегрева.

Настройка случайной глубины PWM может смягчить шум проветривания двигателя и уменьшить электромагнитные помехи для другого оборудования. Если этот параметр

установлен на 0, случайная PWM недействительна.

Код	Название параметра	Диапазон настройки	По умолчанию
d6-04	Выбор режима компенсации мертвой зоны	0: Без компенсации 1: Режим компенсации 1 2: Режим компенсации 2	0
d6-05	Случайная глубина PWM	0: Случайная PWM не действует 1~10: Случайная глубина PWM несущей частоты	1

Как правило, вам не нужно изменять этот параметр. Попытайтесь использовать другой режим компенсации, только при наличии специального требования к качеству сигнала выходного напряжения или колебаний в двигателе.

Для высокочастотного преобразователя частоты рекомендуется использовать режим компенсации 2.

Код	Название параметра	Диапазон настройки	По умолчанию
d6-06	Компенсация обнаружения тока	0~100	0
d6-07	выбор режима SVC	1: Режим SVC 1 2: Режим SVC 2	2

Режим SVC 0: Используется в системе, требующей высокой скорости.

Режим SVC 1: Используется в системе, для которой требуется линейная регулировка крутящего момента.

5.23 Группа U0: параметры мониторинга

Группа U0 используется для контроля состояния работы преобразователя частоты. Вы можете просмотреть значения параметров, используя панель управления, удобную как для ввода в эксплуатацию на месте, так и с главного компьютера посредством связи (адрес: 0x7000 ~ 0x7044).

 $U0-00 \sim U0-31$ - это параметры мониторинга в состоянии запуска и остановки в соответствии с b9-02 и b9-03.

Для получения дополнительной информации см. Таблицу 6-1.

Код	Название параметра	Диапазон настройки
U0-00	Рабочая частота	0.00~320.00 Гц (b0-11 = 2)
U0-01	Установленная частота	0.00~3000.0 Гц (60-11 = 1)

Эти два параметра отображают абсолютное значение теоретической рабочей частоты и заданной частоты. Для фактической выходной частоты преобразователя частоты см. U0-19.

Код	Название параметра	Диапазон настройки
U0-02	Напряжение шины постоянного тока	0.0~3000.0 B

Он отображает напряжение шины постоянного тока преобразователя частоты.

Код	Название параметра	Диапазон настройки
U0-03	Выходное напряжение	0V~1140 B

Он отображает выходное напряжение преобразователя частоты в рабочем состоянии.

Код	Название параметра	Диапазон настройки
U0-04	Выходной ток	0,00А ~ 655,35 А (мощность преобразователя частоты ≤ 55 кВт) 0,0А ~ 6553,5 А (мощность преобразователя частоты> 55 кВт)

Отображает выходной ток преобразователя частоты в рабочем состоянии.

Код	Названиепараметра	Диапазон настройки
U0-05	Выходная мощность	0~32767

Отображает выходную мощность преобразователя частоты в рабочем состоянии.

Код	Название параметра	Диапазон настройки
U0-06	Выходной момент	-200.0%~200.0%

Отображает выходной крутящий момент преобразователя частоты в рабочем состоянии.

Код	Название параметра	Диапазон настройки
U0-07	Состояние DI	-0~32767

Отображает текущее состояние терминалов ввода. После преобразования значения в двоичное число каждый бит соответствует DI. «1» означает сигнал высокого уровня, а «0» означает сигнал низкого уровня. Соответствующая взаимосвязь между битами и DIх описана в следующей таблице.

Бит 0	Бит 1	Бит 2	Бит 3	Бит 4	Бит 5	Бит 6	Бит 7	Бит 8	Бит 9
DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	DI9	DI0
Бит 10	Бит 11	Бит 12	Бит 13	Бит 10	Бит 11	Бит 12	Бит 13	Бит 14	Бит 15
VDI1	VDI2	VDI3	VDI4	VDI1	VDI2	VDI3	VDI4	VDI5	

Код	Название параметра	Диапазон настройки
U0-08	DO состояние	0~1023

Указывает текущее состояние терминалов DO. После того, как значение преобразуется в двоичное число, каждый бит соответствует терминалу DO. «1» означает сигнал высокого уровня, а «0» означает сигнал низкого уровня. Соответствующая взаимосвязь между битами и DOх описана в следующей таблице.

Таблица 6-15. Соответствующая взаимосвязь между битами и DO

Tuestingu e 15. eee ibe ie ib jie maan beatimee bieb mentaj en iumi ii b e					
Бит 0	Бит 1	Бит 2	Бит 3	Бит 4	Бит 5
DO3	Реле 1	Реле 2	DO1	DO2	VDO1
Бит 6	Бит 7	Бит 8	Бит 9	Бит 10	Бит 11
VDO2	VDO3	VDO4	VDO5		

Код	Название параметра	Диапазон настройки
U0-14	Отображение скорости нагрузки	0~65535

Для получения дополнительной информации см. Описание b9-06.

Код	Название параметра	Диапазон настройки
U0-15	Настройка ПИД-регулятора	0~65535
U0-16	Обратная связь ПИД	0~65535

Они отображают значение ПИД и значение обратной связи ПИД.

• Установка ПИД = Установка ПИД (в процентах) × C0-05

• ПИД-обратная связь = обратная связь с ПИД-регулятором (в процентах) × C0-05

	TITIA COPUTIUM CEMSE C	epartiest emiss e ring per junitepe	ин (в предентин) и ее ее
Код		Название параметра	Диапазон настройки
U0-	18	Частота входных импульсов	0,00 кГц ~ 100,00 кГц

Отображает частоту высокочастотных импульсов HDI в минимальной единице 0,01 кГц.

Код	Название параметра	Диапазон настройки
U0-19	Скорость обратной связи, единица измерения: 0,01 Гц	-3000,0 Гц ~ 3000,0 Гц -300,00Гц ~ 300,00 Гц

Отображает фактическую выходную частоту преобразователя частоты.

• Если b0-11 (разрешение команды управления частотой) установлено на 1, диапазон отображения составляет -3000.00 ~ 3000.00 Гц.

• Если b0-11 (разрешение команды управления частотой) установлено на 2, диапазон отображения составляет -300.00 Гц ~ 300.00 Гц.

Код	Название параметра	Диапазон настройки
U0-20	Оставшееся время работы	0,0 мин ~ 6500,0 мин

Он отображает оставшееся время работы, когда включена синхронизация. Подробнее о работе с синхронизацией см. b2-28 ~ b2-30.

Код	Название параметра	Диапазон настройки
U0-21	Напряжение AI1 перед корректированием	0,00 B ~ 10,57 B
U0-22	Напряжение AI2 перед корректированием	0,00 B ~ 10,57 B
U0-23	Напряжение AI3 перед корректированием	-10,57 B ~ 10,57 B

Они отображают фактическое значение напряжения выборки AI. Фактически используемое напряжение получают с помощью линейного корректирования, что уменьшает отклонение между дискретизированным напряжением и фактическим входным напряжением.

Для фактического скорректированного напряжения см. U0-09, U0-10 и U0-11. Для ознакомления с режимом корректирования перейдите к группе b8.

Код	Название параметра	Диапазон настройки
U0-24	Линейная скорость	0.0 мин ~ 65535 м / мин

Он отражает линейную скорость высокоскоростной импульсной выборки HDI. Единица измерения - метр в минуту (метр / мин).

Линейная скорость рассчитывается в соответствии с фактическим количеством выборок импульсов в минуту и С3-07 (количество импульсов на метр).

Код	Название параметра	Диапазон настройки
U0-27	Значение настройки связи	-100.00%~100.00%

Он отображает данные, записанные с помощью адреса связи 0х1000.

Код	Название параметра	Диапазон настройки
U0-28	Действительная обратная связь	-3000,0 Γμ ~ 3000,0 Γμ -300,00 Γμ ~ 300,00 Γμ

Он отображает частоту вращения двигателя, измеренную датчиком.

- Если b0-11 (разрешение команды управления частотой) равно 1, диапазон отображения составляет -3000,0 Гц ~ 3000,0 Гц.
- Если b0-11 (разрешение команды управления частотой) равно 2, диапазон отображения составляет -300,00 Гц ~ 300,00 Гц.

Код	Название параметра	Диапазон настройки
U0-29	Обратная связь энкодера	-3000,0 Гц ~ 3000,0 Гц -300,00 Гц ~ 300,00 Гц

Он отображает настройку основной частоты Х.

- Если b0-11 (разрешение команды управления частотой) равно 1, диапазон отображения составляет -3000,0 Гц ~ 3000,0 Гц.
- Если b0-11 (разрешение команды управления частотой) равно 2, диапазон отображения составляет -300,00 Γ ц ~ 300,00 Γ ц.

Код	Название параметра	Диапазон настройки
		_

U0-30	0,00 Гц ~ 300,00 Гц 0,0 Гц ~ 3000,0 Гц
	0,014 2000,014

Он отображает настройку вспомогательной частоты Ү.

- Если b0-11 (разрешение команды управления частотой) равно 1, диапазон отображения составляет -3000,0 Γ ц ~ 3000,0 Γ ц.
- Если b0-11 (разрешение команды управления частотой) равно 2, диапазон отображения составляет -300,00 Гц ~ 300,00 Гц.

Код	Название параметра	Диапазон настройки
U0-31		0,00 Гц ~ 300,00 Гц 0,0 Гц ~ 3000,0 Гц

Отображает положение ротора синхронного двигателя.

Код	Название параметра	Диапазон настройки
U0-33	Положение ротора синхронного двигателя	0.0°~ 359.9°

Отображает температуру двигателя, полученную с помощью выборки AI3. Подробные сведения о температуре двигателя см. bb-25.

Код	Название параметра	Диапазон настройки
U0-34	Температура двигателя	0°C~200°C

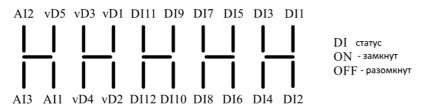
Отображает текущее значение верхнего предела крутящего момента.

Код	Название параметра	Диапазон настройки
U0-35	Целевой момент	-200.0%~200.0%

Отображает текущую позицию резольвера.

Код	Название параметра	Диапазон настройки
U0-36	Положение резольвера	0~4095

Отображает угол между векторами тока и напряжения.


Код	Название параметра	Диапазон настройки
U0-37	Коэффициент мощности	-
U0-38	Позиция ABZ	0~65535

Он отображает счет импульсов фазы A и B данного ABZ или UVW энкодера. Это значение в четыре раза больше количества импульсов, которые запускается энкодер. Например, если дисплей- 4000, фактическое количество импульсов, которое совершает энкодер, равно 4000/4 = 1000.

Значение увеличивается, когда энкодер двигается в прямом направлении и уменьшается, когда энкодер двигается в обратном направлении. Достигнув 65535 отсчет значения начинается с 0. После уменьшения значения до 0, оно снова начинает снижаться с 65535. Вы можете проверить, правильно ли установлен энколер, просмотрев U0-37.

Код	Название параметра	Диапазон настройки
U0-39	Целевое напряжение разделения V / F	0 В ~ номинальное напряжение двигателя
U0-40	Выходное напряжение разделения V / F	0 В ~ номинальное напряжение двигателя
U0-41	Визуальный дисплей состояния входа DI	-

Он визуально отображает состояние DI, формат отображения показан на следующем рисунке.

Диаграмма 5-34 Формат отображения состояния DI		
Код	Название параметра	Диапазон настройки
U0-42	Визуальный дисплей состояния вывода	-

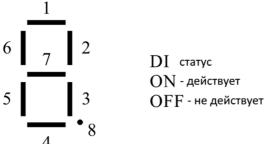

Он визуально отображает состояние DO, формат отображения показан на следующем рисунке. vO4 vO2 DO2 R2 DO3

Диаграмма 5-35 Формат отображения состояния DO

Код	Название параметра	Диапазон настройки
U0-43	Визуальный дисплей состояния функции 1	-

Он показывает, действительны ли функции DI 1-40. Панель управления имеет пять 7-сегментных светодиодов, и каждый 7-сегментный светодиод отображает выбор из восьми функций. 7-сегментный светодиод определен на следующем рисунке.

Диаграмма 5-36 Определение 7-сегментного светодиода

DI terminal function display- отображение функции терминала ввода

ON indicates valid- ON означает действительный

OFF indicates invalid- OFF означает недействительный

7-сегментный светодиодный дисплей имеет функции 1-8, 9-16, 17-24, 25-32 и 33-40 соответственно справа налево.

Код	Название параметра	Диапазон настройки
U0-44	Визуальный дисплей состояния функции 2	-

Он показывает, действительны ли функции DO 41 ~ 59. Формат отображения похож на U0-42. 7-сегментные светодиоды отображают функции 41-48, 49-56 и 57-59 соответственно справа налево.

Код	Название параметра	Диапазон настройки
U0-46	Счетчик фаз Z	-

Он отображает фазу Z-счетчика данного ABZ или UVW энкодера. Значение увеличивается или уменьшается на 1 каждый раз, когда энкодер поворачивает круг вперед или назад. Вы можете проверить, нормально ли установлен энкодер, просмотрев U0-45.

Код	Название параметра	Диапазон настройки
U0-47	Текущая установленная	-100.00%~100.00%

	частота (%)	
U0-48	Текущая рабочая частота (%)	-100.00%~100.00%

Отображает текущую частоту настройки и рабочую частоту. 100.00% соответствует максимальной частоте преобразователя частоты (b0-13).

Код	Название параметра	Диапазон настройки
U0-49	Рабочее состояние преобразователя частоты	0~65535

Данный параметр отображает текущее состояние преобразователя частоты. Формат данных приведен в следующей таблице:

	Бит 0 Бит 1	0: остановка 1: запуск форвардера 2: обратный ход
U0-49	Бит 2 Бит 3	0: постоянная скорость 1: ускорение 2: замедление
	Бит 4	0: нормальное напряжение шины постоянного тока 1: Низкое напряжение шины постоянного тока

Код	Название параметра	Диапазон настройки
U0-50	Отправленное значение точечной связи	-100.00%~100.00%
U0-51	Полученное значение точечной связи	-100.00%~100.00%

Он отображает данные в режиме точечной связи. U0-50 - это данные, отправленные ведущим, а U0-51 - данные, полученные ведомым.

5.24 Группа А0: параметры системы

A0-0	Пользовательский	0~65535	0
	пароль		

Если он установлен на любое ненулевое число, функция защиты паролем включена. После того, как пароль был установлен и вступил в силу, вы должны ввести правильный пароль, чтобы войти в меню. Если введенный пароль неверен, вы не можете просматривать или изменять параметры. Если для A0-00 установлено значение 00000, ранее установленный пароль для пользователя удаляется, а функция защиты паролем отключается.

Используется для того, чтобы определить, можно ли изменять параметры во избежание некорректной работы. Если он настроен на 0, все параметры могут быть изменены. Если он установлен на 1, все параметры можно только просматривать.

A0-01	Номер продукта	Номер продукта преобразователя частоты	В зависимости от модели
A0-02	Версия ПО	Версия программного обеспечения платы управления	В зависимости от модели
A0-07	Свойство изменения параметров	0: Изменяется 1: Не изменяется	0

Он используется, чтобы установить, могут ли параметры быть модифицируемыми, чтобы избежать неправильной работы. Если он установлен в 0, все параметры могут быть изменены. Если он установлен в 1, все параметры можно просмотреть только.

Код	Название параметра	Диапазон настройки	По умолчанию
A0-09	Восстановить настройки по умолчанию	0: Пустая команда 1: Восстановить настройки по умолчанию, кроме параметров двигателя и записи накопления. 4: Очистить записи	0

0: Функция отсутствует

1: Восстановить настройки по умолчанию, кроме параметров двигателя

Если для A0-09 установлено значение 1, большинство функциональных кодов восстанавливаются в качестве значений по умолчанию, кроме параметров двигателя, разрешения команды управления частотой (b0-11), записей о неисправностях, времени аккумуляции (b9-09), времени накопительного включения питания (b9 -08) и потребляемой мощности (b9-10).

4: Очистить записи

Если для параметра A0-09 установлено значение 4, будут зафиксированы записи о неисправностях, время накопления мощности (b9-08), время аккумуляции (b9-09) и накопительное потребление мощности (b9-10).

Оппия:

Код	Название параметра	Диапазон настройки	По умолчанию
A0-11	Копирование параметров	1: Загрузка параметров устройства на панель 2: Загрузка параметров с панели	

^{1:} Загрузка параметров устройства на панель

2: Загрузка параметров с панели

Примечание: после завершения операции $1 \sim 2$ параметр автоматически восстанавливается в ноль

5.25 Группа А2: Параметры оптимизации управления 2

A2-00	Предел тока		Default	150%
A2-00	Диапазон	50%~200%		
	D. Kan annaugus		По	1
A2-01	Выбор ограничени	Я	умолч.	
	Диапазон	0~1		
	Усиление ограничения		По	20
A2-02			умолч.	
	Диапазон	0~100		
	Коэффициент компенсации умножения предела тока		По	50%
A2-03			умолч.	
	Диапазон	50%~200%		

На высоких частотах ток имеет низкие значения. Увеличение скорости еще больше способствует падению тока в ставнении со значениями, действующими в пределах номинальной частоты. Для улучшения характеристик мотора Вы можете снизить ограничение тока для частот выше номинальных.

Функции ограничения тока на высоких частотах позволяет улучшить характеристики для таких применений, как центрифуги, где поле существенно остабляется и есть большая инерция.

Предел тока на частотах выше номинальной = (fs/fn) x k x LimitCur.

- fs: частота
- fn: номинальная частота
- к: коэффициент компенсации (А2-03)
- LimitCur: Предел тока (A2-00)

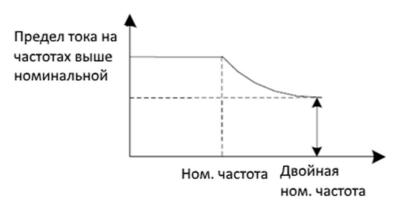


Рис. 5-36 Предел тока на частотах выше номинальных

Примеание: Предел 150% означает 1.5 номинальных тока привода.

Для мощных моторов при несущей частоте ниже 2 к Γ ц предел должен быть установлен ниже. Это необходимо для исключения пульсаций крутящего момента при срабатывании функции превышения тока.

A2-04	Предел напряжения		По умолч.	760B
	Диапазон	200.0V~2000.0V		
A2-05	Выбор предела напряжения		По умолч.	1
	Диапазон	0~1		
A2-06	Усиление частоты	для предела напряжения	По умолч.	30
	Диапазон	0~100		
A2-07	Усиление напряжения для предела напряжения		По умолч.	30
	Диапазон	0~100		
A2-08	Порог увеличения	частоты для ограничения напряжения	По умолч.	5Гц
	Диапазон	0Гц~50Гц		

Увеличение A2-06 улучшает эффект управления напряжением на шине, но выходная частота может колебаться. При существенных флуктуациях частоты A2-06 следует уменьшить. Примечание:При использовании тормозного резичтора или тормозного модуля: Установить A2-05 в 0, поскольку если параметр не равен "0", могут возникнуть проблемы с учеличением времени торможения.

A2-09	Временная констан	та компенсации скольжения	По умолч.	0.5c
	Диапазон	0.1s~10.0s		

Если А2-09 имеен низкие значения, уменьшается время отклика, но может возникнуть перенапряжение, особенно при большой инерции нагрузки.

A2-10	Автоусиление частоты По умолч		По умолч.	0
A2-10	Диапазон	0~1		
A2-11	Ток минимального в	иомента привода	По умолч.	50%
A2-11	Диапазон	10%~100%		
A2-12	Ток максимального	момента рекуперации	По умолч.	20%
A2-12	Диапазон	10%~100%		
A2-13	Коэффициент КР ав	тоувеличения частоты	По умолч.	50
A2-13	Диапазон	0~100		

A2-14	Коэффициент KI ав	тоувеличения частоты	По умолч.	50
A2-14	Диапазон	0~100		
A2-15	Усиление компенса	ции момента	По умолч.	100
A2-15	Диапазон	80~150		
A2-16	КоэффициентКР от	слеживания скорости в закрытом контуре	По умолч.	500
A2-10	Диапазон	0~1000		
A2-17	КоэффициентКІ от	слеживания скорости в закрытом контуре	По умолч.	800
A2-17	Диапазон	0~1000		
	Продод доко при роб	TOTAL D. DOLGOVITON MONTHING	По умолч.	Зависит от
A2-18	Предел тока при работе в закрытом контуре			модели
	Диапазон	30%~200%		

Максимальный ток в режиме отслеживания скорости задается параметром A2-18. The effect of rotational speed tracking will get worse if setting value is too small.

A2-19	Нижний предел тог	Нижний предел тока в режиме отслеживания в закрытом контуре		30%
	Диапазон			
	Время увеличения напряжения в режиме отслеживания скорости		По	1.1s
A2-20			умолч.	
	Диапазон	0.5~3.0c		

A2-21	Время размагничи	вания	По умолч.	1.0s
	Лиапазон	0.00c~5.00c		

Время размагничивания – минимальный интервал между остановом и запуском. Этот параметр действует только если разрешено отслеживанием скорости. При слишком низком значении возможны ошибки по перенапряжению.

A2-22	Напряжение торможения		По умолч.	760B
	Диапазон	650B~800B	•	

Напряжение, при котором активируется функция принудительного торможения

А2-23 Коэффициент К		ратковременного прерывания питания	По умолч.	40
	Диапазон	0~100		
A2-24	Коэффициент Кі кратковременного прерывания питания По умолч.		30	
	Диапазон	0~100		
A2-25	Время замедления	при прерывании питания	По умолч.	20.0s
	Диапазон 0~300.0s			

A2-23, A2-24 действуют только если bb-21=1. При появлении ошибки по просадке напряжения при кратковременном прерывании питания увеличьте Кр и Кі. A2-25 действует только если bb-21=2.

6. ЭМС (электромагнитная совместимость)

6.1 Определение

Электромагнитная совместимость - это способность электрооборудования работать в среде электромагнитных помех и стабильно выполнять свою функцию без помех в электромагнитной среде.

6.2 Описание стандарта ЭМС

В соответствии с требованиями национального стандарта GB / Т12668.3 преобразователь должен соответствовать требованиям электромагнитных и анти электромагнитных помех.

Существующие продукты нашей компании применяют новейший международный стандарт IEC / EN61800-3: 2004 (регулируемые системы электропривода с регулируемой скоростью, часть 3: требования к электромагнитной совместимости и специальные методы испытаний), что эквивалентно национальному стандарту GB / T12668.3. IEC / EN61800-3 оценивает инвертор с точки зрения электромагнитных помех и анти электронных помех. Электромагнитное воздействие в основном тестируют радиационные помехи, помехи на проводимость и интерференции гармонических колебаний на инверторе (требуется для корректного использования). Антимагнитные помехи в основном проверяют отторжение проводимости, излучение интерференционных помех, подавление помех от перенапряжений, быстрое и изменяемое подавление помех последовательности пульсов, подавлением помех от электростатического разряда и подавлением помех в низкочастотных концевых интерференциях (конкретные тестовые элементы, в том числе: 1. Тест на отклонение помех от входного напряжения провисает, прерывается и изменяется; 2. Испытание на интерференцию интерференционного преобразования фазы; Тест изменения частоты входного сигнала 5. Тест на разбаланс входного напряжения, 6. Тест флуктуаций входного напряжения).

Испытания должны проводиться строго в соответствии с вышеуказанными требованиями IEC / EN61800-3, а продукция нашей компании устанавливается и используется в соответствии с разделом 7.3 и имеет хорошую электромагнитную совместимость в общепромышленной среде.

6.3 Руководство по ЭМС

6.3.1 Эффект гармоники

Более высокие гармоники питания могут повредить инвертор. Таким образом, в некоторых местах, где качество сети довольно невелико, рекомендуется установить входной реактор переменного тока.

6.3.2 Электромагнитные помехи и меры предосторожности при установке

Существует два вида электромагнитных помех, один из которых является помехой электромагнитного шума в окружающей среде на преобразователе, а другой - помехой преобразователя на окружающем оборудовании.

Меры предосторожности при установке:

- 1) Провода заземления частотного преобразователя и других электрических устройств должны быть хорошо заземлены;
- 2) Кабели питания и выходные силовые кабели преобразователя и кабели слабого тока (например, линии управления) не должны располагаться параллельно, предпочтительнее всего вертикальное расположение.
- 3) Рекомендуется, чтобы на выходных силовых кабелях преобразователя использовались экранирующие кабели или экранированные кабели из стали и чтобы защитный слой надежно заземлялся.

Проводные кабели оборудования, испытывающего помехи, рекомендуется использовать с экранированной витой парой, а защитный слой надежно заземлен.

4) Если длина кабеля двигателя превышает 100 метров, ему необходимо установить выходной фильтр или реактор.

6.3.3 Способ обращения с помехами окружающего оборудования в преобразователе

Электромагнитные помехи в преобразователе возникают из-за того, что рядом с ним установлено множество реле, контакторов и электромагнитный тормоз. Когда преобразователь получает ошибку, вызванную помехами, могут быть приняты следующие меры:

- 1) Установите ограничитель перенапряжения на устройства, генерирующие помехи;
- 2) Установите фильтр на входном конце инвертора. Обратитесь к разделу 7.3.6 за конкретными операциями.
- 3) Проводные кабели управляющего сигнального кабеля преобразователя и линии обнаружения используют экранированный кабель, защитный слой должен быть надежно заземлен.

6.3.4 Метод обработки помех преобразователя частоты на окружающем оборудовании

Эти помехи включают в себя два типа: первый - это интерференция излучения преобразователя,

а второй - помехи от проводимости преобразователя. Эти два типа помех приводят к тому, что окружающее электрооборудование претерпевает электромагнитную или электростатическую индукцию. Таким образом, окружающее оборудование создает ошибку. Для разных помех его можно обработать, обратившись к следующим методам:

1) Для измерительных счетчиков, приемников и датчиков их сигналы обычно слабы. Если они размещены рядом с преобразователем или вместе с ним в одном шкафу управления, они легко претерпевают интерференцию и, таким образом, генерируют ошибки. Рекомендуется справляться с помощью следующих способов:

Поместите в места, расположенные далеко от источника помех; не располагайте сигнальные кабели и кабели питания параллельно и никогда не связывайте их вместе; оба сигнальные кабели, так и силовые кабели используют экранированные кабели и хорошо заземляются; установите ферритовое магнитное кольцо (с подавляющей частотой от 30 до 1000 МГц) на выходной стороне преобразователя и проведите от 2 до 3 циклов; установите выходной фильтр ЕМС в более тяжелые условия.

- 2) Когда оборудование получает помехи, а преобразователь использует один и тот же источник питания, это может вызвать интерференцию проводимости. Если вышеуказанные методы не могут устранить помехи, нужно установить фильтр ЭМС между инвертором и источником питания (см. раздел 7.3.6 для операции прототипирования);
- 3) Окружающее оборудование заземлено отдельно, что позволяет избежать помех, вызванных утечкой тока проводника инвертора при использовании общего режима заземления.

6.3.5 Ток утечки и обращение с ним

При использовании преобразователя возможны две формы тока утечки. Одна из них - ток утечки на землю, а другая - ток утечки между кабелями.

1) Факторы, влияющие на ток утечки на землю и решения:

Между проводниками и землей распределена емкость. Чем больше распределенная емкость, тем больше будет ток утечки. Распределенная емкость может быть уменьшена за счет эффективного уменьшения расстояния между преобразователем и двигателем. Чем выше несущая частота, тем больше будет ток утечки. Ток утечки можно уменьшить, уменьшив несущую частоту.

Однако, уменьшение несущей частоты может привести к дополнительному шуму двигателя. Обратите внимание на то, что дополнительная установка реактора также является эффективным методом для удаления тока утечки.

Ток утечки может увеличиться после добавления тока цепи. Поэтому, когда мощность двигателя высока, соответствующий ток утечки также будет высоким.

2) Факторы создания тока утечки между кабелями и решение:

Между выходными кабелями преобразователя есть распределенная емкость. Если ток, проходящий по линиям, имеет более высокую гармонику, это может вызвать резонанс и, следовательно, привести к утечке тока. Если используется тепловое реле, оно может вызвать ошибку.

Решение состоит в том, чтобы уменьшить несущую частоту или установить выходной реактор. Рекомендуется, чтобы тепловое реле не было установлено перед двигателем при использовании преобразователя и вместо этого использовалась функция защиты от перегрузки по току преобразователя.

6.3.6 Меры предосторожности при установке входного фильтра ЭМС на входном конце источника питания

- 1) При использовании преобразователя строго соблюдайте его номинальные значения. Так как фильтр относится к электрическим приборам категории I, металлический корпус фильтра должен быть большим, а металлическое основание установочного шкафа должно быть хорошо заземлено и иметь хорошую непрерывность проводимости. В противном случае, может возникнуть опасность поражения электрическим током, и влияние ЭМС может быть весьма значительным.
- 2) Посредством теста ЭМС установлено, что земля фильтра должна быть соединена с РЕ-концом инвертора на том же открытом заземлении. В противном случае, влияние ЭМС может сильно пострадать.
- 3) Фильтр должен быть установлен в месте, близком к входному концу источника питания насколько это возможно.

7. Диагностика и устранение неисправностей

7.1 Сигнал тревоги и контрмеры

Преобразователь SL9 имеет 35 типов предупреждающей информации и функций защиты. В случае аномальной неисправности будет активирована функция защиты, преобразователь подаст сигнал останова, сработает контакт реле и на панели дисплея преобразователя отобразится код неисправности. Прежде чем обратиться в сервисный отдел, пользователь может выполнить самопроверку в соответствии с указаниями этой главы, проанализировать причину неисправности и найти решение. Если неисправность вызвана причинами, которые описаны в колонке, обозначенной пунктиром, обратитесь к официальному представителю или свяжитесь напрямую с нашей компанией. Среди 35 типов предупреждающей информации Err22 является аппаратным сигналом перенапряжения или сверхтока. В большинстве случаев неисправность

аппаратного перенапрамения вызывает арарийный сигнал Frr??

ппаратного перенапряжения вызывает аварийный сигнал Err22.			
Название ошибки	Вывод на экран	Возможные причины	Решения
Защита инверторного блока	Err01	1: Выходная цепь заземлена или закорочена. 2: Соединительный кабель двигателя слишком длинный. 3: Перегрев IGBT. 4: Внутренние соединения ослаблены. 5: Основная панель управления неисправна. 6: Неисправна плата привода. 7: IGBT инвертора неисправен.	1: Устранить внешние неисправности. 2: Установить реактор или выходной фильтр. 3: Проверить воздушный фильтр и охлаждающий вентилятор. 4: Правильно подключить все кабели. 5: Обратиться за технической поддержкой 6: Обратиться за технической поддержкой 7:Обратиться за технической поддержкой
Превышение тока во время ускорения	Err02	1: Выходная цепь заземлена или закорочена. 2: Не выполняется автонастройка двигателя. 3: Время ускорения слишком короткое. 4: Ручное повышение крутящего момента или не подходит кривая V / F. 5: Напряжение слишком низкое. 6: Операция запуска выполняется на вращающемся двигателе. 7: При ускорении добавляется внезапная нагрузка. 8: Модель частотного преобразователя имеет слишком малый класс мощности.	1: Устранить внешние неисправности. 2: Выполнить автонастройку двигателя. 3: Увеличить время разгона. 4: Отрегулировать ручное увеличение крутящего момента или кривую V / F. 5: Отрегулировать напряжение до нормального диапазона. 6: Выбрать перезапуск скорости вращения или запустить двигатель после его остановки. 7: Удалить добавленную нагрузку. 8: Выбрать преобразователь частоты с более высоким классом мощности.
Превышение тока при замедлении	Err03	1: Выходная цепь заземлена или закорочена. 2: Не выполняется автонастройка двигателя. 3: Время замедления слишком	1: Устранить внешние неисправности. 2: Выполнить автонастройку двигателя. 3: Увеличить время

	I		
		короткое. 4: Напряжение слишком низкое. 5: При замедлении добавляется внезапная нагрузка. 6: Тормозной блок и тормозной резистор не установлены.	торможения. 4: Отрегулировать напряжение до нормального диапазона. 5: Удалить добавленную нагрузку. 6: Установить тормозной блок и тормозной резистор.
тока при постоянной 2: Не выполняется автонастройка двигателя. 3: Напряжение слишком низкое. 4: Во время работы добавляется внезапная нагрузка. 5: Модель частотного преобразователя имеет слишком малый класс		2: Не выполняется автонастройка двигателя. 3: Напряжение слишком низкое. 4: Во время работы добавляется внезапная нагрузка. 5: Модель частотного преобразователя имеет	1: Устранить внешние неисправности. 2: Выполнить автонастройку двигателя. 3: Отрегулировать напряжение до нормального диапазона. 4: Удалить добавленную нагрузку. 5: Выбрать преобразователь частоты более высокого класса мощности.
Перенапряжен ие во время ускорения	Err05	1: Входное напряжение слишком велико. 2: внешняя сила приводит в движение двигатель во время ускорения. 3: Время ускорения слишком короткое. 4: Тормозной блок и тормозной резистор не установлены.	1: Отрегулируйте напряжение до нормального диапазона. 2: Отменить внешнее усилие или установить тормозной резистор. 3: Увеличьте время разгона. 4: Установите тормозной блок и тормозной резистор.
Перенапряжен ие при замедлении	Err06	1: Входное напряжение слишком велико. 2: Внешняя сила приводит в движение двигатель во время торможения. 3: Время замедления слишком короткое. 4: Тормозной блок и тормозной резистор не установлены.	1: Отрегулировать напряжение до нормального диапазона. 2: Отменить внешнее усилие или установить тормозной резистор. 3: Увеличить время торможения. 4: Установить тормозной блок и тормозной резистор.
Перенапряжен ие при постоянной скорости	Err07	1: Входное напряжение слишком велико. 2: Внешняя сила приводит в движение двигатель во время торможения.	1: Отрегулировать напряжение до нормального диапазона. 2: Отменить внешнее усилие или установить тормозной резистор.
Ошибка питания блока управления	Err08	Входное напряжение не находится в допустимом диапазоне	Отрегулировать входное напряжение до допустимого диапазона.
Низкое напряжение	Err09	1: Мгновенный сбой питания происходит от входного источника питания. 2: Входное напряжение преобразователя частоты не находится в допустимом диапазоне.	1: Сбросить неисправность. 2: Отрегулировать напряжение до нормального диапазона. 3: Запросить техническую поддержку 4: Обратиться за технической поддержкой

r	ı	T	1
		3: Напряжение шины постоянного тока отклоняется от нормы. 4: Выпрямительный мост и буферный резистор неисправны. 5: Неисправна плата привода. 6: Неисправна основная панель управления.	5: Обратиться за технической поддержкой 6: Обратиться за технической поддержкой
Перегрузка инвертора	Err10	1: Нагрузка слишком тяжелая или заблокирована - ротор возникает на двигателе. 2: Модель преобразователя частоты имеет слишком малый класс мощности.	1: Уменьшить нагрузку и проверить двигатель и механическое состояние. 2: Выбрать преобразователь частоты с более высоким классом мощности.
Перегрузка двигателя	Err11	1: bb-02 установлено неправильно. 2: Нагрузка слишком тяжелая или заблокирована - ротор находится на двигателе. 3: Модель частотного преобразователя имеет слишком малый класс мощности. 1: Установите bb-02 проверить двигатель и механическое состоян за: Выбрать частотный преобразователь с бол высоким классом мош	
Потеря фазы питания	Err12	1: Трехфазная входная мощность отклонена от нормы. 2: Неисправна плата привода. 3: Молниезащитная панель неисправна. 4: Основная панель управления неисправна.	1: Устранить внешние неисправности. 2: Обратиться за технической поддержкой. 3: Обратиться за технической поддержкой. 4: Обратиться за технической поддержкой.
Потеря фазы питания	Err13	1: Неисправен кабель, соединяющий преобразователь частоты и двигатель. 2: Трехфазные выходы преобразователя частоты несимметричны при работе двигателя. 3: Неисправна плата привода. 4: IGBT-модуль неисправен.	1: Устранить внешние неисправности. 2: Проверить, нормально ли работает трехфазная обмотка двигателя. 3: Обратиться за технической поддержкой. 4: Обратиться за технической поддержкой.
Перегрев модуля IGBT	Err14	1: Температура окружающей среды слишком высокая. 2: Воздушный фильтр заблокирован. 3: Вентилятор поврежден. 4: Термочувствительный резистор IGBT-модуля поврежден. 5: Поврежден модуль IGBT инвертора.	1: Уменьшить температуру окружающей среды. 2: Очистить воздушный фильтр. 3: Заменить поврежденный вентилятор. 4: Заменить поврежденный термочувствительный резистор. 5: Заменить модуль инвертора.
Нарушение	Err15	1: Сигнал внешней	1: Сбросить операцию.

внешнего оборудования		неисправности вводится через DI. 2: Сигнал внешней неисправности вводится через виртуальный ввод-вывод.	2: Сбросить операцию.
Ошибка связи	Err16	1: Главный компьютер находится в неправильном состоянии. 2: Кабель связи неисправен. 3: Карта расширения связи установлена неправильно. 4: Параметры связи в группе bA установлены неправильно.	1: Проверить кабели хост- компьютера. 2: Проверить кабели связи. 3: Установить карту расширения связи правильно. 4: Правильно настроить параметры связи.
Ошибка контактора	Err17	1: Плата привода и блок питания неисправны. 2: Контактор неисправен.	1: Заменить неисправную плату привода или плату питания. 2: Заменить неисправный контактор.
Ошибка обнаружения тока	Err18	1: Датчик Холла неисправен. 2: Неисправна плата привода.	1: Заменить неисправное устройство. 2: Заменить неисправную плату привода.
Ошибка автонастройки двигателя	Err19	1: Параметры двигателя не установлены в соответствии с паспортной табличкой. 2: Автонастройка двигателя отключена.	1: Установить параметры двигателя в соответствии с паспортной табличкой. 2: Проверить кабель, соединяющий преобразователь частоты и двигатель.
Ошибка датчика	Err20	1: Неправильный тип энкодера. 2: Неправильное подключение кабеля датчика. 3: Кодер поврежден. 4: РG-карта неисправна.	1: Правильно установить тип энкодера в зависимости от фактической ситуации. 2: Устранить внешние неисправности. 3: Заменить поврежденный датчик. 4: Заменить неисправную карту PG.
Ошибка чтения-записи EEPROM	Err21	Микросхема EEPROM повреждена.	Заменить основную панель управления.
Ошибка аппаратной части преобразовате ля частоты	Err22	1: Существует перенапряжение. 2: Существует избыточный ток.	1: Отрегулировать, основываясь на перенапряжении. 2: Отрегулировать, основываясь на превышении тока.
Короткое замыкание на землю	Err23	Двигатель замыкается на землю.	Замените кабель или двигатель.
Достигнуто суммарное время работы	Err26	Накопительное время работы достигает значения настройки.	Очистить запись через параметр A0-09

Пользовательс кая ошибка 1	Err27	1: Сигнал пользовательской ошибки 1 вводится через DI. 2: Сигнал пользовательской ошибки 1 вводится через	1: Сбросить операцию. 2: Сбросить операцию.
Пользовательс кая ошибка 2	Err28	виртуальный ввод-вывод. 1: Сигнал пользовательской неисправности 2 вводится через DI. 2: Сигнал пользовательской ошибки 2 вводится через виртуальный ввод-вывод.	1: Сбросить операцию. 2: Сбросить операцию
Достигнуто суммарное время включения питания	Err29	Накопительное время включения питания достигает значения настройки.	Очистить запись через параметр A0-09
Выгрузка	Err30	Ток работы преобразователя частоты ниже заданного значения.	Убедитесь, что нагрузка отключена или настройка параметров верна.
Потеря обратной связи ПИД во время работы	Err31	Обратная связь ПИД ниже, чем настройка C0-26.	Проверить сигнал обратной связи ПИД-регулятора или установить значение С0-26 на правильное значение.
Текущий отказ ограничения тока посредством волны	Err40	1: Нагрузка слишком тяжелая или заблокирована - ротор находится на двигателе. 2: Модель преобразователя частоты имеет слишком малый класс мощности.	1: Уменьшить нагрузку, проверить двигатель и механическое состояние. 2: Выбрать преобразователь частоты с более высоким классом мощности.
Ошибка переключения двигателя во время работы	Err41	Измените выбор двигателя через клемму во время работы частотного преобразователя.	Выполнить переключение двигателя после остановки преобразователя частоты.
Слишком большое отклонение скорости	Err42	1: Параметры датчика установлены неправильно. 2: Автонастройка двигателя не выполняется. 3: Параметры обнаружения слишком большого отклонения скорости установлены неверно.	1: Правильно установить параметры кодировщика. 2: Выполнить автонастройку двигателя. 3: Правильно установить параметры обнаружения на основе реальной ситуации.
Слишком высокая скорость двигателя	Err43	1: Параметры датчика установлены неправильно. 2: Автонастройка двигателя не выполняется. 3: Параметры обнаружения превышения скорости установлены неверно.	1: Правильно установить параметры кодировщика. 2: Выполнить автонастройку двигателя. 3: Правильно установить параметры обнаружения превышения скорости на основе реальной ситуации.
Перегрев	Err45	1: Кабель датчика температуры	1: Проверить кабели датчика

двигателя		ненадежно закреплен. 2: Температура двигателя слишком высокая.	температуры и устранить неисправность кабеля. 2: Понизить несущую частоту или принять другие меры по тепловому излучению.
Ошибка начального положения	Err51	1: Параметры двигателя не корректны, отклонение основывается на реальной ситуации.	1: Убедитесь, что параметры двигателя установлены правильно и установка номинального тока не слишком мала.

7.2 Общие неисправности и решения

При использовании частотного преобразователя могут возникать следующие неисправности. Для того, чтобы проанализировать некоторые неисправности обратитесь к следующей таблице.

Таблица 8-2 Устранение неполадок с общими неисправностями преобразователя частоты

п/п	Ошибка	Возможные причины	Возможные решения
1	Нет отображения при включении питания.	1: Отсутствует подача питания к преобразователю частоты или потребляемая мощность преобразователя частоты слишком низкая. 2: Неисправен источник питания переключателя на плате преобразователя частоты. 3: Мостовой выпрямитель поврежден. 4: Панель управления или рабочий пульт неисправны. 5: Кабель, соединяющий панель управления, плату привода, и рабочий пульт отсоединен или поврежден.	1: Проверить источник питания. 2: Проверить напряжение шины постоянного тока. 3: Проверить внутреннюю проводку 4: Сменить клавиатуру 5: Обратиться за технической поддержкой.
2	При включении питания отображается «-SOS-».	1: Кабель, находящийся между платой привода и панелью управления находится в плохом контакте. 2: Связанные компоненты на плате управления повреждены. 3: Двигатель или кабель двигателя закорочены на землю. 4: Устройство Холла неисправно. 5: Потребляемая мощность преобразователя частоты слишком низкая.	1: Проверить проводку 2: Обратиться за технической поддержкой.
3	При включении питания отображается «Егг23».	1: Двигатель или выходной кабель двигателя закорочены на землю. 2: Преобразователь частоты поврежден.	1: Измерить изоляцию двигателя и выходного кабеля с помощью мегагерца. 2: Обратиться за

			технической поддержкой.
4	При включении питания преобразователь частоты работает нормально, но после запуска и остановки сразу же отображается «-SOS-».	1: Охлаждающий вентилятор поврежден или заперт ротор. 2: Кабель клемм внешнего управления закорочен.	1: Заменить поврежденный вентилятор. 2: Устранить внешнюю неисправность.
5	Часто повторяется ошибка Err14 (перегрузка IGBT-модуля).	1: Установка несущей частоты слишком велика. 2: Вентилятор охлаждения поврежден или воздушный фильтр заблокирован. 3: Компоненты внутри преобразователя частоты повреждены (тепловой соединитель или другие).	1: Уменьшить несущую частоту (d6-00). 2: Заменить вентилятор и очистить воздушный фильтр. 3: Обратиться за технической поддержкой.
6	Двигатель не вращается после работы частотного преобразователя.	1: Проверьте двигатель и кабели двигателя. 2: Параметры частотного преобразователя установлены неправильно (параметры двигателя). 3: Кабель между платой привода и панелью управления находится в плохом контакте. 4: Неисправна плата привода.	1: Убедитесь, что кабель между преобразователем частоты и двигателем нормальный. 2: Замените двигатель или устраните механические неисправности. 3: Проверьте и переустановите параметры двигателя.
7	Терминалы ввода отключены.	1: Параметры установлены неверно. 2: Внешний сигнал неверен. 3: Перемычка между ОР и + 24 В расшатана. 4: Панель управления неисправна.	1: Проверить и сбросить параметры в группе F4. 2: Повторно подключить внешние сигнальные кабели. 3: Повторно проверить перемычку между ОР и +24 В. 4: Обратиться за технической поддержкой.
8	Частота вращения двигателя всегда низка в режиме VC.	1: Энкодер неисправен. 2: Кабель датчика подключен неправильно или находится в плохом контакте. 3: РС-карта неисправна. 4: Неисправна плата привода.	1: Замените датчик и убедитесь, что кабели установлены правильно. 2: Замените плату РG. 3: Обратитесь за технической поддержкой.
9	Частотный преобразователь часто регистрирует превышение тока и перенапряжение.	1: Параметры двигателя установлены неправильно. 2: Время разгона / торможения является неправильным.	1: Переустановите параметры двигателя или выполните повторную настройку автоподстройки

		3: Нагрузка колеблется.	двигателя. 2: Установите правильное время разгона / торможения. 3: Обратитесь за технической поддержкой
10	Сообщается о включении или запуске Err17.	Программный пусковой контактор не поглощается.	1: Проверьте, не отсоединен ли кабель контактора. 2: Проверьте, исправен ли контактор. 3: Проверьте, не поврежден ли источник питания контактора 24 В. 4: Обратитесь за технической поддержкой.
11	8.8.8.8 отображается при включении питания.	Взаимосвязанный элемент на панели управления поврежден.	Замените панель управления.

Приложение I. Протокол обмена данными Modbus

Преобразователь серии SL9 обеспечивает интерфейс системы связи RS485 и утверждает протокол обмена данными MODBUS. Пользователь может осуществлять централизованный мониторинг через ПК / ПЛК для получения рабочих требований. Также, пользователь может установить текущую команду, изменить или прочитать коды функций, рабочее состояние или информацию о неисправности преобразователя частоты по протоколу обмена данными Modbus.

І. О Протоколе

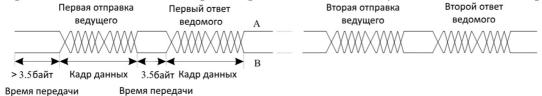
Данный протокол обмена данными определяет передачу информации, используя формат последовательной связи и включает в себя формат упорядоченного опроса (или широковещательного) и метод основного кодирования, а контент включает в себя функциональный код действия, передачу данных и проверку ошибок. Ответ подчиненного компонента является одной и той же структурой, и он включает в себя подтверждение действия, возврат данных и проверку ошибок и т. д. Если подчиненный компонент выполняет ошибку во время приема информации или не может завершить действие, требуемое ведущим устройством, он отправит один сигнал о неисправности в качестве ответа ведущему устройству.

II. Методы применения

Преобразователь частоты будет подключен к сети управления ПК / ПЛК «Режим работы "опрос"» («Single-master Multi-slave») с каналом RS485 в качестве подчиненного компонента связи.

III. Структура канала

1) Аппаратное сопряжение.


Терминалы «485+» и «485-» на частотном преобразователе представляют собой интерфейсы связи Modbus

2) Топологический режим

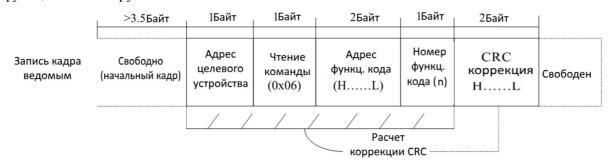
Это система «Режима работы "опрос"». В этой сети каждый коммуникационный компьютер имеет уникальный подчиненный адрес. Один из них - «ведущий» (обычно ПК-хост, ПЛК и НМІ и т. д.) активно отправляет сообщение, считывает или записывает параметры подчиненного компонента. Другие устройства будут использоваться как подчиненные и отвечать на запрос / команду от ведущего устройства. Одновременно один компьютер может отправить данные, а другие устройства находятся в статусе приема. Диапазон настройки подчиненного адреса от 0 до 247. Нуль относится к широковещательному сообщению. Адрес подчиненного устройства должен быть исключительным в сети.

3) Режим передачи

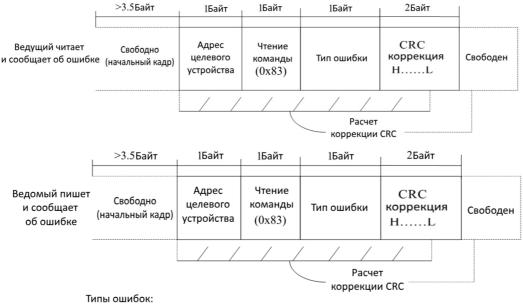
В данном случае предусмотрен режим асинхронной последовательности и полудуплексной передачи. В последовательной асинхронной связи данные отправляются покадрово в виде сообщения. Согласно протоколу Modbus-RTU, когда свободное время без передачи в линиях передачи данных больше, чем время передачи в 3,5 байт, это указывает на новый старт связи.



Преобразователь серии SL9 имеет встроенный протокол обмена данными Modbus-RTU и применим для ответа подчиненному компоненту «Запрос / команда» или для выполнения действия в соответствии с «Запросом/ Командой» ведущего устройства и ответа на данные.


В данном случае, ведущее устройство - персональный компьютер (ПК), производственная установка или программируемый логический контроллер (ПЛК), а подчиненное - преобразователь. Ведущее устройство не только проверяет какое-то подчиненное устройство, но также отправляет информацию всем подчиненным компонентам. На «Запрос / Команда» одного ведущего устройства все подчиненные устройства возвращают сигнал в качестве ответа; на широковещательную информацию, предоставленную ведущим устройством, подчиненному устройству не требуется обратная связь с ответом.

Структура передаваемых данных


Формат данных протокола Modbus преобразователя серии SL9 показан ниже. Преобразователь поддерживает только чтение и запись параметров типа Word, соответствующая команда операции чтения - <0x03>, команда операции записи - <0x06>. Операция записи и чтения байта или бит не поддерживается.

Теоретически, главный компьютер может непрерывно считывать несколько кодов функций за один раз (то есть максимальное значение «n» равно 12), но обратите внимание, что во избежание неправильного ответа не нужно перепрыгивать через последний функциональный код в данной функциональной группе.

Если ошибочный кадр передачи данных был обнаружен подчиненным устройством или по другим причинам, вызванным отказом чтения и записи, ошибочный кадр будет повторен.

01 - Ошибка кода команды

02 - Ошибка адреса

03 - Ошибка данных

04 - Команда не может быть выполнена

Формат кадра RTU

Начало кадра (START)	Отрезок времени больше, чем 3,5
	Адрес для связи: от 1 до 247 (0: широковещательный адрес)

Командный код (CMD)	03: Считать параметры подчиненного устройства 06: Записать параметры подчиненного устройства
Адрес кода функции (H) Адрес кода функции (L)	Определяет внешний адрес преобразователя частоты в шестнадцатеричном формате; Существуют параметры функционального кода или нефункционального кода (такие как параметр состояния прогона / параметр выполняемой команды), подробности см. Определение адреса. Во время передачи старший бит устанавливается спереди, а младший бит - сзади.
Количество функциональных кодов (H) Количество функциональных кодов (L)	Указывает количество кода функции, подготовленного кадром. Если это составляет число «1», это означает, что он считывает один функциональный код. Во время передачи старший бит помещается спереди, а младший бит - сзади. Только один функциональный код может быть изменен одновременно без группы разрядов.
Данные (Н)	Определяет ответные данные или данные, ожидающие ввода. Во время передачи данных (L) старший бит размещается
Данные (L) КОНЕЦ	спереди, а младший бит - сзади. 3,5-отрезок времени

Коды команд и данные

Код 03H (0000 0011), чтение N слов (до 12 слов).

Например: для инвертора с адресом 01H, стартовый адрес памяти 1001H чтение 5 последовательных адресов запрос будет следующим:

RTU режим: Команда ведущего

Старт	T1-T2-T3-T4
Адрес	01H
Команда	03H
Верхний бит стартового адреса	00H
Нижний бит стартового адреса	04H
Верхний бит данных	00H
Нижний бит данных	02H
Нижний бит CRC CHK	85H
Верхний бит CRC CHK	CAH
Конец	T1-T2-T3-T4

RTU режим: Ответ ведомого

Старт	T1-T2-T3-T4
Адрес	01H
Команда	03H
Верхний бит данных	00H
Нижний бит данных	0AH
Верхний бит текущей частоты	xxH
Нижний бит текущей частоты	xxH

Верхний бит напряжения DC	xxH
Нижний бит напряжения DC	xxH
Верхний бит вых. напряжения	xxH
Нижний бит вых. напряжения	xxH
Верхний бит вых. тока	xxH
Нижний бит вых. тока	xxH
Верхний бит вых. мощности	xxH
Нижний бит вых. мощности	xxH
Нижний бит CRC CHK	xxH
Верхний бит CRC CHK	xxH
Конец	T1-T2-T3-T4

Код 06Н (0000 0110), запись одного слова.

Например, запись 10000 (2710H) (у с т а н о в л е н н а я частота b0-12) в ячейку 1000H инвертора с адресом 01H выглядит так:

RTU режим: Команда ведущего

Старт	T1-T2-T3-T4
Адрес	01H
Команда	06H
Верхний бит адреса данных	10H
Нижний бит адреса данных	01H
Верхний бит данных	27H
Нижний бит данных	10H
Нижний бит CRC CHK	97H
Верхний бит CRC CHK	36H
Конец	T1-T2-T3-T4

RTU режим: Ответ ведомого

Старт	T1-T2-T3-T4
Адрес	01H
Команда	06H
Верхний бит адреса данных	10H
Нижний бит адреса данных	01H
Верхний бит данных	27H
Нижний бит данных	10H
Нижний бит CRC CHK	97H
Верхний бит CRC CHK	36H
Конец	T1-T2-T3-T4

Проверка CRC

В режиме RTU сообщения содержат поле проверки ошибок, основанное на методе CRC. Поле CRC проверяет содержимое всего сообщения. Поле CRC представляет собой два байта, содержащих 16-битное двоичное значение. Значение CRC вычисляется передающим устройством, которое добавляет CRC в сообщение. Принимающее устройство повторно вычисляет CRC во время приема сообщения и сравнивает вычисленное значение с фактическим значением, которое оно принимало в поле CRC.

Если два значения не равны, это означает, что передача является ошибкой.

CRC запускается с помощью 0xFFFF. Затем, начинается процесс применения последовательных восьмибитовых байтов сообщения к текущему содержимому регистра. Для генерации CRC используются только восемь бит данных в каждом символе. Биты начала и окончания и бит четности не применяются к CRC. Во время генерации CRC каждый восьмибитовый символ является исключительным ORed с содержимым регистра. Затем, результат сдвигается в направлении наименее значимого бита (LSB), при этом нуль заполняется в положение самого значимого бита (MSB).

LSB извлекается и изучается. Если LSB был 1, регистр является исключающим ORed с заданным, фиксированным значением. Если LSB был 0, исключающий OR отсутствует. Этот процесс повторяется до тех пор, пока не будут выполнены восемь сдвигов. После последнего (восьмого) сдвига следующий восьмибитовый байт представляет собой исключающий ORed с текущим значением регистра, и процесс повторяется для еще восьми сдвигов, как описано выше. Конечное содержимое регистра, после того как все байты сообщения были применены, является

значением CRC.

Когда CRC добавляется к сообщению, сначала добавляется младший байт, за которым следует старший байт.

*Ко∂

Определение адреса параметра связи

Чтение и запись параметров функционального кода (Некоторый функциональный код не изменяется, только для использования производителем.)

Номер группы и знак функционального кода - это адрес параметра для указания правил.

Байты верхнего уровня: Группа A0 ~ AF (Group A0-A2 / Group b0-bC), Group b0-bF (Группа C0 C6 / Группа d0-d6), 70-7F (Группа U)

Байты нижнего уровня: от 00 до FF

Например: b0-03, адрес указывает на 0хА303.

Примечание: Группа U: Только для параметра чтения не могут быть изменены параметры, некоторые параметры не могут быть изменены во время работы, некоторые параметры независимо от того, в каком режиме включен преобразователь, параметры не могут быть изменены. Изменяя параметры кода функции, обратите внимание на объем параметров, единиц и относительных инструкций.

Группа функциональных кодов	Адрес для связи	Адрес запроса Когда связь изменяет RAM
A0~ A2	0xA000~ 0xA2FF	0x4000~ 0x42FF
b0~bC	0xA300~ 0xAFFF	0x4300~ 0x4FFF
C0~C6	0xb000~ 0xB7FF	0x5000~ 0x57FF
d0~d6	0xB800~ 0xBEFF	0x5800~ 0x5EFF
U0	0x7000~ 0x70FF	

Кроме того, из-за частого сохранения в EEPROM, сокращается срок службы EEPROM. В режиме связи некоторые функциональные коды не нужно сохранять, пока изменяются значения RAM.

Адрес параметра	Описание параметра	Адрес параметра	Описание параметра
1000	Установленное значение связи (- 10000 ~ 10000) (десятичное)	1010	Настройка ПИД- регулятора
1001	Частота работы	1011	Обратная связь ПИД
1002	Напряжение шины постоянного тока	1012	Процесс ПЛК
1003	Выходное напряжение	1013	Импульсная входная частота, единица измерения: 0,01 кГц
1004	Выходной ток	1014	Скорость обратной связи, единица измерения: 0,1 Гц
1005	Выходная мощность	1015	Оставшееся время работы
1006	Выходной момент	1016	Напряжение до коррекции AI1
1007	Скорость бега	1017	Напряжение до коррекции AI2
1008	Входной разъем DI	1018	Напряжение до

			коррекции AI3
1009	Выходной терминал DO	1019	Линейная скорость
100A	Напряжение AI1	101A	Текущее время включения питания
100B	Напряжение AI2	101B	Текущее время работы
100C	Напряжение AI3	101C	Импульсная входная частота, единица измерения: 1 Гц
100D	Подсчет значений	101D	Значение настройки связи
100E	Ввод значения длины	101E	Фактическая скорость обратной связи
100F	Скорость загрузки	101F	Основной дисплей частоты X
		1020	Вспомогательная частота Y

Примечание. Значение настройки связи - это процент относительного значения, 10000 соответствует 100%, -10000 соответствует -100,00%.

Преобразователь частоты входного сигнала команды управления: (только для записи)

Адрес командного слова	Командная функция
2000	0001: Перемотка вперед
	0002: Обратный ход
	0003: Прямой пробег
	0004: Обратный пробег
	0005: Свободная остановка
	0006: Остановка торможения
	0007: Сброс ошибки

Состояние чтения преобразователя: (только для чтения)

Адрес командного слова	Командная функция
3000	0001: Перемотка вперед
	0002: Обратный ход
	0003: Стоп

Параметр блокировки паролей параметров: (Если обратная связь равна 8888Н, это указывает на совпадение паролей)

Парольный адрес	Содержание пароля ввода
1F00	****

Адрес команды блокировки пароля	Содержание команды блокировки пароля
2001	Управление выходом ВІТ0: DO1 Управление выходной мощностью ВІТ1: DO2 ВІТ2: Управление выходом реле 1 ВІТ3: Управление выходом реле 2 ВІТ4: Управление выходом FMR ВІТ5: VDO1 ВІТ6: VDO2 ВІТ7: VDO3 ВІТ8: VDO4 ВІТ9: VDO5

Управление аналоговым выходом АО1: (только для записи)

Адрес командного слова	Командная функция
2002	0 ~ 7FFF указывает 0% ~ 100%

Управление аналоговым выходом АО2: (только для записи)

Адрес командного слова	Командная функция
2003	0 ~ 7FFF указывает 0% ~ 100%

Управление импульсным выходом: (только для записи)

Адрес командного слова	Командная функция
2004	0 ~ 7FFF указывает 0% ~ 100%

Описание неисправности преобразователя:

Описание неисправности преобразователя	Информация об ошибке преобразователя		
8000	0000: Нет ошибки 0001: Зарезервировано 0002: Ускорение по току 0003: Замедление по току 0004: Постоянная скорость по току 0005: Ускорение по напряжению 0006: Замедление по напряжению 0007: Постоянная скорость по напряжению 0008: Ошибка буфера резистора 0009: Снижение напряжения 000A: Перегрузка частоты преобразователя 000B: Перегрузка двигателя 000C: Сбой входной фазы 000D: Сбой выходной фазы 000E: Перегрев IGBT 000F: Ошибка внешнего оборудования 0010: Ошибка связи 0011: Ошибка контактора 0012: Ошибка автонастройки двигателя 0014: Ошибка датчика / PG	0015: Чтение и запись EEPROM 0016: Ошибка аппаратной части преобразователя частоты 0017: Замыкание на замыкание на землю 0018: Реверсивный 0019: Реверсивный 0019: Реверсивный 0018: Пользовательская ошибка 1 001С: Пользовательская ошибка 1 001С: Пользовательская ошибка 2 001D: Достигнуто время нарастания мощности 001Е: Выгрузка 001F: ПИД потерян во время работы 0028: Ошибка ограничения максимального тока 0029: Ошибка переключения двигателя во время работы 002A: Слишком большое отклонение скорости 002B: Превышение скорости двигателя 002D: Перегрев двигателя 005A: Ошибка настройки закодированных строк 005B: Не подключаться к энкодеру	

005С: Ошибка начального
местоположения
005Е: Ошибка обратной связи
по скорости

Адрем ошибок связи Modbus

Адрес	Fault information		
8001	0000: Нет ошибок 0001: Ошибка пароля 0002: Ошибка кода команды 0003: Ошибка СRC 0004: Неверный адрес	0005: Неверные данные 0006: Изменение запрещено 0007: Заблокировано системой 0008: Инвертор занят (EEPROM сохранение)	

Группа bA Параметры связи

Код	Название параметра	Диапазон настройки	По умолчанию
bA-00	Выбор типа связи	0: протокол Modbus	0

Теперь, SL9 поддерживает Modbus, позже добавит протокол обмена данными, такой как протокол PROFIBUS-DP и CAN. Для получения дополнительной информации см. Описание «Протокола обмена данными SL9».

Код	Название параметра	Диапазон настройки	По умолчанию
bA-01	Настройка отношения Baud	Разряд единиц: коэффициент передачи по протоколу Modbus. 0: 300 BPS 1: 600 BPS 2: 1200 BPS 3: 2400 BPS 4: 4800 BPS 5: 9600 BPS 6: 19200 BPS 7: 38400 BPS	5

Этот параметр используется для установки скорости передачи данных с главного компьютера и преобразователя частоты. Обратите внимание на то, что коэффициент бод хост-компьютера и преобразователя должен быть последовательным. В противном случае, сообщение невозможно. Чем выше коэффициент бод, тем быстрее будет происходить передача.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-02	Формат данных Modbus	0: Нет проверки, формат данных <8, N, 2> 1: Контроль по четности, формат данных <8, E, 1> 2: Проверка на нечетность, формат данных <8, O, 1> 3: Нет проверки, формат данных <8, N, 1> Действительно для Modbus	0

Формат данных для главного компьютера и преобразователя частоты должен быть последовательным, иначе связь будет невозможна.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-03	Адрес широковещания	0 ~ 247 (0: широковещательный адрес) 0 - широковещательный адрес	1

Если для локального адреса установлено значение 0, а именно широковещательный адрес, он может реализовать широковещательную функцию хост-компьютера.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-04	Время отклика Modbus	0 ~ 20 мс Действует только для Modbus	2мс

Время задержки ответа: относится к интервалу времени от преобразователя, который завершает прием данных для отправки данных на главный компьютер. Если время ответа меньше времени обработки системы, время задержки ответа зависит от временной задержки времени обработки системы. Если время задержки ответа больше, чем время обработки системы, то после того, как система обрабатывает данные, его следует отложить, чтобы подождать, пока не будет достигнуто время задержки ответа, а затем отправит данные обратно на главный компьютер.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-05	Время ожидания связи	0.0c: недействительный 0.1c ~ 60.0c Действительно для Modbus	0.0c

Когда функция установлена на 0.0, параметр времени ожидания интерфейса связи недействителен.

Если для функционального кода установлено значение времени и если интервал времени между сообщением и следующей связью превышает время ожидание связи, система сообщит об ошибке отказа связи (Err16). При обычных обстоятельствах он будет установлен как недействительный. Если в системе непрерывной связи установить этот параметр, вы можете контролировать состояние связи.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-06	Выбор формата передачи данных протокола Modbus	Разряд единиц: протокол Modbus. 0: Нестандартный протокол Modbus 1: Стандартный протокол Modbus	1

bA-06 = 1: выберите стандартный протокол Modbus.

bA-06 = 0: при чтении команды возврат подчиненного устройства на один байт больше, чем в стандартном протоколе Modbus, для получения дополнительной информации см. Структуру данных связи этого протокола.

Код	Название параметра	Диапазон настройки	По умолчанию
bA-07	Текущее разрешение связи	0: 0.01A 1: 0.1A Modbus	0

Он используется для подтверждения единицы текущего значения, когда обмен данными считывает выходной ток.

Приложение II. Таблица функциональных кодов

Если для А0-00 установлено ненулевое число, защита параметров включена. Вы должны ввести правильный пароль пользователя для входа в меню.

Чтобы отменить функцию защиты паролем, введите с паролем и установите А0-00 в 0.

Меню параметров в режиме заданного пользователем параметра можно напрямую вводить без пароля.

Группа «А» - это системный параметр преобразователя частоты. Группа «b» - это основные функциональные параметры. Группа «С» - это параметр приложения, группа «d» - это параметр управления, а группа «U» - это контроль параметров функции.

Символы в таблице кодов функций описываются следующим образом:

- «☆»: параметр может быть изменен, когда преобразователь частоты находится в состоянии остановки или работы.
- «★»: параметр не может быть изменен, когда преобразователь частоты находится в рабочем состоянии.
- «•»: параметр является фактически измеренным значением и не может быть изменен.
- «*»: Параметр является заводским параметром и может быть изменен только изготовителем.

Стандартные функциональные параметры

Код	Название параметра	Диапазон настройки	По умолчанию	Свойство
b0-00	Выбор типа двигателя	Разряд единиц: выбор двигателя 1 Разряд десятков: выбор двигателя 2 0: асинхронный двигатель переменного тока 1: постоянный магнитный синхронный двигатель	00	*
b0-01	Режим управления двигателем	Разряд единиц: выбор режима управления двигателем 1. Разряд десятков: выбор режима управления двигателем 2. 0: векторный контроль без датчика (SVC) 1: Векторное управление с замкнутым контуром (FVC) 2: контроль V / F Разряд сотен / разряд тысяч: зарезервировано Разряд десятка тысяч: Выбор двигателя 0: Двигатель 1 1: Двигатель 2	2	*
b0-02	Выбор источника команды	0: Управление клавиатурой (светодиод выключен) 1: Управление терминалом (светодиод включен) 2: Управление связью (мигает светодиод)	0	*
b0-03	Выбор основной частоты X	0: Цифровая настройка (предустановленная частота b0-12, BBEPX / BHИЗ модифицируемая, без записи после выключения)	10	*

		1: Цифровая настройка (Предустановленная частота b0-12, ВВЕРХ / ВНИЗ модифицируемая, запись после выключения) 2: АІ1 3: АІ2 4: АІЗ 5: Настройка импульсов (НОІ) 6: Многофункциональный 7: Встроенный ПЛК 8: ПИД 9: Настройка связи 10. Потенциометр клавиатуры		
b0-04	Выбор источника вспомогательной частоты Y	То же, что и b0-03 (выбор источника основной частоты X)	1	*
b0-05	Выбор диапазона вспомогательной частоты Ү	0: Относительно максимальной частоты 1: Относительно основной частоты X	0	❖
b0-06	Диапазон вспомогательной частоты Y	0%~150%	100%	*
b0-07	Выбор источника частоты	Разряд единиц: выбор источника частоты. 0: источник основной частоты X 1: расчет X и Y (результат вычисления определяется десятизначной цифрой) 2: Переключение между X и Y 3: Переключение между X и «Расчет X и Y» 4: Переключение между Y и «Расчет X и Y» Разряд десятков: отношение вычисления X и Y 0: X + Y 1: X-Y 2: Максимум из них 3: Минимум из них	0	*
b0-08	Смещение частоты вспомогательного источника частоты X и Y	0,00 Гц ~ максимальная частота (b0-13)	0,00 Гц	☆
b0-09	Источник команды привязки к источнику частоты	Разряд единиц: команда привязки клавиатуры к следующему источнику частоты. 0: Нет привязки	0	☆

10.10		1: Источник частоты благодаря цифровой настройке 2: АI1 3: АI2 4: АI3 5: Настройка импульсов (HDI) 6: Многофункциональный 7: Простой ПЛК 8: ПИД 9: Настройка связи Разряд десятков: команда привязки терминала к источнику частоты. 0 ~ 9, такой же как и разряд единиц Разряд сотен: привязка команды обмена данными к источнику частоты. 0 ~ 9, такой же как и разряд единиц Разряд тысяч: Автоматическая привязка к частоте. 0 ~ 9, такой же как и разряд единиц		
b0-10	Запись частоты цифровых настроек отключения питания	0: нет записи 1: запись	1	☆
b0-11	Частотный блок	1: 0,1 Гц 2: 0,01 Гц	50,00 Гц	☆
b0-12	Предустановленная частота	0.00 ~ максимальная частота (b0-13)	50,00 Гц	☆
b0-13	Максимальная частота	50,00 ~ 3000,00 Гц	0	☆
b0-14	Источник верхнего предела частоты	0: Установить по (b0-15) 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: Настройка связи	50,00 Гц	☆
b0-15	Верхний предел частоты	Нижний предел частоты (b0-17) ~ максимальная частота (b0-13)	0.00 Гц	☆
b0-16	Смещение верхнего предела частоты	0,00 Гц ~ максимальная частота (b0-13)	0.00 Гц	☆
b0-17	Нижний предел частоты	0,00 Гц ~ верхний предел частоты (b0-15)	0	☆
b0-18	Направление вращения	0: Направление вперед 1: Обратное направление	0	☆

	1			
b0-19	Базовая частота для изменения ВВЕРХ / ВНИЗ во время работы	0: Частота работы 1: Настройка частоты	0	*
b0-20	Режим ускорения / замедления	0: линейное ускорение / замедление 1: ускорение / замедление S-кривой A 2: ускорение / замедление S-кривой В	0	☆
b0-21	Время разгона 1	0,00c ~ 650,00 c (b0-25 = 2) 0,0 c ~ 6500,0 c (b0-25 = 1) 0c ~ 65000 c (b0-25 = 0)	В зависимости от модели	☆
b0-22	Время торможения 1	0,00c ~ 650,00 c (b0-25 = 2) 0,0 c ~ 6500,0 c (b0-25 = 1) 0c ~ 65000 c (b0-25 = 0)	В зависимости от модели	☆
b0-23	Временная доля начального сегмента кривой S	0,0% ~ (100,0% минус b0-24)	30.0%	☆
b0-24	Временная доля конечного сегмента кривой S	0,0% ~ (100,0% минус b0-23)	30.0%	☆
b0-25	Время ускорения/замедлен ия	0: 1c 1: 0,1 c 2: 0,01 c		☆
b0-26	Базовая частота ускорения / замедления	0: Максимальная частота (b0-13) 1: установить частоту 2: 100 Гц	0	*
	Группа b1: пар	аметры управления пуском и	остановкой	
b1-00	Режим пуска	0: Прямой пуск 1: Перезапуск скорости вращения 2: Предварительно возбужденный старт (асинхронный двигатель переменного тока)	0	*
b1-01	Режим отслеживания скорости вращения	0: От частоты при остановке 1: С нулевой скоростью 2: С максимальной частоты	0	*
b1-02	Скорость отслеживания скорости вращения	1~100	20	*
b1-03	Частота запуска	0,00 ~ 10,00 Гц	0.00 Гц	☆
b1-04	Время задержки при	0.0c~100.0c	0.0c	*

b1-05	Запуск торможения постоянным током / ток предварительного возбуждения		%~100%	0%	*
b1-06	Время торможения постоянным током / Время предварительного возбуждения		0c~100.0c	0.0c	*
b1-07	Режим остановки		замедлить остановку свободная остановка	0	☆
b1-08	Начальная частота торможения постоянным током при остановке		00 Гц ~ максимальная стота	0,00 Гц	☆
b1-09	Время ожидания торможения постоянным током при остановке		0c~100.0c	0.0c	*
b1-10	О Значение тока при торможении постоянным током		%~100%	0%	*
b1-11	b1-11 Время торможения постоянным током при остановке		0c~100.0c	0.0c	*
	Групп	па t	2: Вспомогательная функци	R	
b2-00	Частота работы JOG		0,00 Гц ~ максимальная частота	6,00 Гц	☆
b2-01	Время ускорения JOG		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-02	Время замедления JOG		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-03	Время ускорения 2		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-04	Время замедления 2		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-05	Время ускорения 3		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-06	Время замедления 3		0.0c ~ 6500.0c	В зависимости от модели	☆
b2-07	Время ускорения 4		0.0c ~ 6500.0c	В	☆

			зависимости от модели	
b2-08	Время замедления 5	0.0c ~ 6500.0c	В зависимости от модели	☆
b2-09	Частота прыжков 1	0,00 Гц ~ максимальная частота	0,00 Гц	☆
b2-10	Частота прыжков 2	0,00 Гц ~ максимальная частота	0,00 Гц	☆
b2-11	Амплитуда скачка	0,00 Гц ~ максимальная частота	0,00 Гц	☆
b2-12	Частота прыжков во время разгона / торможения	0: Отключено 1: Включено	0,00 Гц	☆
b2-13	Точка переключения частоты между временем ускорения 1 и временем разгона 2	0,00 Гц ~ максимальная частота	0,00 Гц	☆
b2-14	Точка переключения частоты между временем торможения 1 и временем торможения 2	0,00 ~ максимальная частота	0,00 Гц	☆
b2-15	Обратный ход	0: Включено 1: Отключено	0	☆
b2-16	Время переднего/заднего вращения мертвой зоны	0.0~3000.0c	0.0c	☆
b2-17	Режим работы при заданной частоте ниже нижнего предела частоты	0: Запуск при нижнем пределе частоты 1: Остановить 2: Запуск с нулевой скоростью	0	☆
b2-18	Контроль частоты	0,00 Гц ~ 10,00 Гц	0,00 Гц	☆
b2-19	Конечный приоритет JOG	0: Отключено 1: Включено	0	☆

b2-20	Установка порога достижения времени включения питания	0 ~ 65000 ч	0 ч	ኋ
b2-21	Установка порога достижения рабочего времени	0 ~ 65000 ч	Оч	☆
b2-22	Действие	0: Продолжить выполнение	0	☆

	после достижения времени выполнения	1: Остановить		
b2-23	Управление вентилятором охлаждения	0: Работа вентилятора во время работы 1: Работа вентилятора во время включения питания	0	☆
b2-24	Спящая частота	0,00 Гц ~ частота пробуждения (b2-26)	0,00 Гц	☆
b2-25	Время бездействия	0.0c~6000.0c	0,00 с	☆
b2-26	Частота пробуждения	Низкая частота (b2-24) ~ максимальная частота (b0-13)	0,00 Гц	☆
b2-27	Время задержки пробуждения	0.0c~6000.0c	0,00 с	☆
b2-28	Функция синхронизаци и	0: Отключено 1: Включено	0	☆
b2-29	Источник времени синхронизаци и	0: b2-30 1: AI1 2: AI2 3: AI3 (100% от аналогового входа соответствует значению b2-30)	0	☆
b2-30	Длительность синхронизации	0,0 мин ~ 6500,0 мин	0,0 мин	☆
b2-31	Данное время работы достигло порога	0,0 мин ~ 6500,0 мин	0,0 мин	☆
b2-32	Защита при запуск	e 0: Нет 1: Да	0	*
	Группа ь	3:конечные параметры входа пер	еключателя	
b3-00	Выбор функции DI1	0: нет функции 1: Forward RUN (FWD) или	1	*
b3-01	Выбор функции DI2	команда запуска 2: Обратный режим RUN (REV) или FWD / REV	4	*
b3-02	Выбор функции DI3	3: Трехлинейное управление 4: Передний JOG (FJOG) 5: Обратный JOG (RJOG)	6	*
b3-03	Выбор функции DI4	6: Многофункциональный терминал 1 7: Многофункциональный	7	*
b3-04	Выбор функции	терминал 2 8: Многофункциональный	8	*

	DI5	терминал 3 9: Многофункциональный		
b3-05	Импульсный вход	терминал 4 10: Терминал ВВЕРХ	9	*
b3-06	Выбор функции DI7 (продолжение)	11: Терминал ВНИЗ 12: Сброс до нуля настроек ВВЕРХ и ВНИЗ (терминал,	32	*
b3-07	Выбор функции DI8 (продолжение)	клавиатура) 13: Терминал 1 для выбора времени разгона / торможения 14: Терминал 2 для выбора времени разгона / торможения 15: Переключение источника частоты 16: Переключение между источником основной частоты X и заданной частотой 17: Переключение между источником вспомогательной частоты Y и заданной частотой 18: Терминал 1 для переключения источника команд 19: Терминал 2 для переключения источника команд 20: Регулирование скорости / Переключения источника команд 21: Контроль крутящего момента запрещен 22: Пауза ПИД 23: ПИД интегральная пауза 24: Обратное направление действия ПИД-регулятора 25: Переключение параметров ПИД 26: Сброс состояния ПЛК 27: Пауза поворота 28: Вход счетчика 29: Сброс счетчика 30: Счетчик длины 31: сброс длины 31: сброс длины 32: Импульсный вход (включен только для НDI) 33: Разрешение изменения частоты 34: Ускорение / замедление запрещено 35: Терминал 1 выбора	0	*
b3-08	Выбор функции DI9 (продолжение)	двигателя 36: Терминал 2 выбора двигателя (резервный) 37: Сброс ошибки	0	*
b3-09	Выбор функции DI10 (продолжение)	38: Нормально открытый (NO) вход внешней неисправности 39: Нормально замкнутый (NC) вход внешней неисправности	0	*
b3-10	Выбор функции DI11 (продолжение)	40: Пользовательская ошибка 1 41: Определенная пользователем ошибка 2	0	*

b3-11	Выбор функции DI12 (продолжение)	42: Запуск паузы 43: Свободная остановка 44: Аварийная остановка 45: Внешний СТОП-терминал 1 46: Внешний СТОП-терминал 2 47: Торможение постоянным током торможения 48: Немедленное торможение постоянным током 49: Очистить текущее время работы	0	*
b3-12	Время фильтрации DI	0.000c~1.000c	0.010c	☆
b3-13	Режим команды терминала	0: двухлинейный режим 1 1: двухлинейный режим 2 2: трехстрочный режим 1 3: трехстрочный режим 2	0	*
b3-14	Скорость терминала ВВЕРХ / ВНИЗ	0,001 Гц/с ~ 65,535 Гц/с	1.000 Гц/с	☆
b3-15	Время задержки включения DI1	0.0c ~ 3000.0c	0.0c	☆
b3-16	Время задержки выключения DI1	0.0c ~ 3000.0c	0.0c	☆
b3-17	Время задержки включения DI2	0.0c ~ 3000.0c	0.0c	☆
b3-18	Время задержки выключения DI2	0.0c ~ 3000.0c	0.0c	☆
b3-19	Время задержки включения DI3	0.0c ~ 3000.0c	0.0c	☆
b3-20	Время задержки выключения DI3	0.0c ~ 3000.0c	0.0c	☆
b3-21	Время задержки включения DI4	0.0c ~ 3000.0c	0.0c	☆
b3-22	Время задержки выключения DI4	0.0c ~ 3000.0c	0.0c	☆
b3-23	Время задержки включения DI5	0.0c ~ 3000.0c	0.0c	☆
b3-24	Время задержки выключения DI5	0.0c ~ 3000.0c	0.0c	*
b3-25	Действительный выбор DI 1	Разряд единиц: допустимый режим DI1. 0: низкий уровень действует 1: Действительный уровень действителен Разряд десятков: действительный режим DI2. 0, 1 (то же, что и DI1)	00000	*

		Разряд сотен: действительный режим DI3. 0, 1 (то же, что и DI1) Разряд тысяч: действительный режим DI4.		
		0, 1 (то же, что и DI1) Разряд десятка тысяч: Действующий режим DI5. 0, 1 (то же, что и DI1)		
b3-26	Действительный выбор DI 2	Разряд единиц: допустимый режим HDI. 0, 1 (то же, что и DI1) Разряд десятков: действительный режим DI7. 0, 1 (то же, что и DI1) Разряд сотен: состояние DI8. 0, 1 (то же, что и DI1) Разряд тысяч: действительный режим DI9. 0, 1 (то же, что и DI1) Десять тысяч цифр: действительный режим DI10. 0, 1 (то же, что и DI1)	00000	*
b3-27	Правильный выбор DI 3	Разряд единиц: действующий режим DI11. 0, 1 (то же, что и DI1) Разряд десятков: Действующий режим DI12. 0, 1 (то же, что и DI1)	00	*
	Группа b4: те	рминалы сигнального выхода пе	реключателя	
b4-00	Режим вывода FM- терминала	0: Импульсный выход (FMP) 1: Выход сигнала переключения (FMR)	1	☆
b4-01	Функция FMR (выход с открытым коллектором)	0: нет выхода 1: сигнал готовности 2: Частотный преобразователь	0	☆
b4-02	Функция реле 1 (TA1-TB1-TC1)	работает 3: Выход неисправности (ошибка свободного останова)	3	☆
b4-03	Функция реле 2 (TA2-TB2-CK2)	4: Выход неисправности (ошибка останова, но не выводятся при низком	2	☆
b4-04	Выбор функции DO1 (выходной разъем с открытым коллектором)	напряжении) 5: Ограничение частоты поворота 6: Ограничение крутящего момента	1	☆
b4-05	Функция DO2 (продолжение)	7: Достигнут верхний предел частоты 8: Достигнутый предел частоты	0	☆
b4-06	Функция DO3 (продолжение)	(применительно к работе) 9: Достигнутый предел частоты (с выходом на остановке)	0	☆
b4-07	Функция DO4	10: обратный ход 11: Работа с нулевой скоростью	0	☆

	(продолжение)	(без выхода при остановке) 12: Работа с нулевой скоростью		
b4-08	Функция DO5 (продолжение)	2 (с выходом на остановке) 13: Достигнуто заданное значение счетчика 14: Достигнуто заданное значение счетчика 15: Достигнута длина 16: Цикл ПЛК завершен 17: Выход FDT1 на частотном уровне 18: Определение уровня частоты FDT2 19: Достигнута частота 20: Достигнута частота 20: Достигнута частота 2 22: Ток 1 достигнут 23: Ток 2 достигнут 24: Достигнута температура модуля 25: Достигнуто время 26: Состояние нулевого тока 27: Выходной ток превысил	0	☆
b4-09	Функция DO6 (продолжение)	ограничение 28: Выход низкого напряжения 29: Предварительное предупреждение о перегрузке частоты инвертора 30: Предварительное предупреждение о перегреве двигателя 31: Предварительное предупреждение о перегреве двигателя 32: выгрузка 33: АП больше АІ2 34: Превышение входного сигнала АІ1 35: Сигнальный выход (все неисправности) 36: Достигнуто время выполнения 37: Достигнуто время нарастания мощности 38: Достигнуто суммарное время работы	0	☆
b4-10	Время задержки включения FMR	0.0c ~ 3000.0c	0.0c	☆
b4-11	Время задержки выключения FMR	0.0c ~ 3000.0c	0.0c	☆
b4-12	Время задержки включения реле1	0.0c ~ 3000.0c	0.0c	☆
b4-13	Время задержки выключения реле1	0.0c ~ 3000.0c	0.0c	☆
b4-14	Время задержки включения реле2	0.0c ~ 3000.0c	0.0c	☆

b4-15	Время задержки выключения реле2	0.0c ~ 3000.0c	0.0c	☆
b4-16	Время задержки включения DO1	0.0c ~ 3000.0c	0.0c	☆
b4-17	Время задержки выключения DO1	0.0c ~ 3000.0c	0.0c	☆
b4-18	Время задержки включения DO2	0.0c ~ 3000.0c	0.0c	*
b4-19	Время задержки выключения DO2	0.0c ~ 3000.0c	0.0c	☆
b4-20	Выбор логики DO 1	Разряд единиц: действительный режим FMR. 0: Положительная логика 1: Отрицательная логика Разряд десятков: Релейный режим 1. 0, 1 (аналогично FMR) Разряд сотен: Релейный режим 2. 0, 1 (аналогично FMR) Разряд тысяч: действительный режим DO1. 0, 1 (аналогично FMR) Разряд десятка тысяч: допустимый режим DO2. 0, 1 (аналогично FMR)	00000	☆
b4-21	Выбор логики DO 2	Разряд единиц: допустимый режим DO3. 0: Положительная логика 1: Отрицательная логика Разряд десятков: Действующий режим D04. 0, 1 (аналогично FMR) Разряд сотен: действительный режим DO5. 0, 1 (аналогично FMR) Разряд тысяч: действительный режим DO6. 0, 1 (аналогично FMR) Разряд тысяч: действительный режим DO6. 0, 1 (аналогично FMR) Разряд десятка тысяч: зарезервировано	00000	☆
b4-22	Значение обнаружения частоты (FDT1)	0,00 Гц ~ максимальная частота	50,00 Гц	☆
b4-23	Гистерезис определения частоты (гистерезис FDT 1)	0,0% ~ 100,0% (уровень FDT1)	5.0%	☆
b4-24	Значение обнаружения частоты (FDT2)	0.00 Гц ~ максимальная частота	50.00 Гц	☆

b4-25	Гистерезис определения частоты (гистерезис FDT 2)	0,0% ~ 100,0% (уровень FDT2)	5.0%	☆
b4-26	Амплитуда обнаружения достигнутой частоты	0,00 ~ 100% (максимальная частота)	3.0%	☆
b4-27	Любая частота, достигающая значения обнаружения 1	0.00 Гц ~ максимальная частота	50.00 Гц	☆
b4-28	Любая частота, достигающая амплитуды обнаружения 1	0,00 ~ 100% (максимальная частота)	3.0%	☆
b4-29	Любая частота, достигающая значения обнаружения 2	0.00 Гц ~ максимальная частота	50.00 Гц	☆
b4-30	Любая частота, достигающая амплитуды обнаружения 2	0,00 ~ 100% (максимальная частота)	3.0%	☆
b4-31	Уровень обнаружения нулевого тока	0,0% ~ 100,0% (номинальный ток двигателя)	5.0%	☆
b4-32	Время задержки обнаружения нулевого тока	0.00c~600.00c	0.10c	☆
b4-33	Превышение выходного тока	0,0% ~ 300,0% (номинальный ток двигателя)	200.0%	☆
b4-34	Время задержки обнаружения выходного тока	0.00c~600.00c	0.10c	☆
b4-35	Любой ток, достигающий 1	0,0% ~ 100,0% (номинальный ток двигателя)	100.0%	☆
b4-36	Амплитуда любого тока, достигающего 1	0,0% ~ 100,0% (номинальный ток двигателя)	3.0%	☆
b4-37	Любой ток, достигающий 2	0,0% ~ 100,0% (номинальный ток двигателя)	100.0%	☆
b4-38	Амплитуда любого тока, достигающего 2	0,0% ~ 100,0% (номинальный ток двигателя)	3.0%	☆
b4-39	Порог температуры модуля	25~100°C	75°C	☆

	Группа b5: терминалы импульсного / аналогового входа				
b5-00	Минимальный входной импульс (HDI)	0,00 κΓμ ~ b5-02	0,00 кГц	☆	
b5-01	Соответствующая установка минимального входного импульса	-100.00% ~100.0%	0.00%	☆	
b5-02	Максимальный вход импульса	b5-00 ~ 100,00 кГц	50,00 кГц	☆	
b5-03	Соответствующая настройка максимального входного импульса	-100.00% ~100.0%	100.0%	☆	
b5-04	Время импульсного фильтра	0.00c~10.00c	0.10c	☆	
b5-05	Нижний предел защиты входного напряжения AI1	0,00 B ~ b5-06	3,10 B	☆	
b5-06	Верхний предел защиты входного напряжения AI1	b5-05 ~ 10,00 B	6.80 B	☆	
b5-07	Минимальное значение входа AI1	0,00 B ~ b5-15	0.00B	☆	
b5-08	Соответствующая установка минимального входа АП	-100.00% ~100.0%	0.0%	☆	
b5-09	Максимальное значение входа AI1	0,00 B ~ 10,00 B	10.00 B	*	
b5-10	Соответствующая настройка максимального входа АП	-100.00% ~100.0%	100.0%	☆	
b5-11	Время входного фильтра AI1	0.00c~10.00c	0.10c	☆	
b5-12	Минимальный вход AI2	0,00 B ~ 10,00 B	0,00 B	☆	
b5-13	Соответствующая настройка минимального входа AI2	-100.00% ~100.0%	0.0%	*	
b5-14	Максимальный вход AI2	0,00 B ~ 10,00 B	10.00 B	☆	
b5-15	Соответствующая	-100.00% ~100.0%	100.0%	☆	

	настройка максимального входа AI2			
b5-16	Время входного фильтра AI2	0.00c~10.00c	0.10c	☆
b5-17	Минимальный вход AI3	-10.00B ~10.00B	-10.00 B	☆
b5-18	Соответствующая установка минимального входа AI3	-100.00%~100.0%	-100.0%	☆
b5-19	Максимальный вход AI3	0,00 B ~ 10,00 B	10.00 B	☆
b5-20	Соответствующая настройка максимального входа AI3	-100.00%~100.0%	100.0%	☆
b5-21	Время фильтрации AI3	0.00~10.00c	0.10c	☆
b5-22	Минимальное значение кривой 4 входа АІ	0,00 B ~ 10,00 B	0.00B	☆
b5-23	Соответствующая настройка минимального значения кривой 4 входа АІ	-100.00% ~100.0%	0.0%	☆
b5-24	Входное значение кривой 4 AI в точке перегиба 1	0,00 B ~ 10,00 B	3.00B	☆
b5-25	Соответствующая настройка кривой 4 АІ в точке перегиба 1	-100.00% ~100.0%	30.0%	☆
b5-26	Входное значение кривой 4 AI в точке перегиба 2	0,00 B ~ 10,00 B	6.00B	☆
b5-27	Соответствующая настройка кривой 4 АІ в точке перегиба 2	-100.00% ~100.0%	60.0%	☆
b5-28	Максимальное значение кривой 4 входа АІ	0,00 B ~ 10,00 B	10.00 B	☆

b5-29	Соответствующая настройка максимального значения кривой 4 входа АІ	-100.00% ~100.0%	100.0%	☆
b5-30	Минимальное значение кривой 5 входа АІ	-10,00 B ~ 10,00 B	-10.0B	☆
b5-31	Соответствующая настройка минимального значения кривой 5 входа АІ	-100.00% ~100.0%	-100.0%	☆
b5-32	Входное значение кривой 5 АІ в точке перегиба 1	-10,00 B ~ 10,00 B	-3.00B	☆
b5-33	Соответствующая настройка кривой 5 АІ в точке перегиба 1	-100.00% ~100.0%	-30.0%	☆
b5-34	Входное значение кривой 5 AI в точке перегиба 2	-10,00 B ~ 10,00 B	3.00B	☆
b5-35	Соответствующая настройка кривой 5 АІ в точке перегиба 2	-100.00% ~100.0%	30.0%	☆
b5-36	Максимальное значение кривой 5 входа АІ	b5-33~ 10,00 B	10,00 B	*
b5-37	Соответствующая настройка максимального значения кривой 5 входа АІ	-100.00%~100.0%	100.0%	☆
b5-38	Точка перекоса на настройке входа Al1	-100.00%~100.0%	0.0%	☆
b5-39	Амплитуда перекоса на настройке входа Al1	0%~100.0%	0.5%	☆
b5-40	Точка перекоса на настройке входа Al2	-100.00%~100.0%	0.0%	☆

b5-41	Амплитуда перекоса на настройке входа AI2	0%~100.0%	0.5%	☆
b5-42	Точка перекоса на настройке входа Al3	-100.00%~100.0%	0.0%	☆
b5-43	Амплитуда перекоса на настройке входа AI3	0%~100.0%	0.5%	☆
b5-44	Выбор кривой	1 кривая 1 (точка 2, относительно b5-07b5- 2 кривая 2 (точка 2, относительно b5-12b5- 3 кривая 3 (точка 2, относительно b5-17b5- 4 кривая 4 (точка 4, относительно b5-22b5- 5 кривая 5 (точка 4, относительно b5-30b5- Бит десятков: Выбор кривой А2. Настройки такие же, как и выше. Бит сотен: Выбор кривой А3. Настройки такие же, как и выше.	H321	☆
b5-45	АІ ниже минимального выбора настроек входа	Бит единиц: AI1 ниже минимальных настроек входа 0 - соответствующая минимальная настройка входа 1 - 0.0% Бит десятков: то же для AI2 Бит сотен: то же для AI3	H.000	*
	Группа b6: то	ерминалы импульсного / аналого	вого выхода	
b6-00	Выбор функции FMP	0: Частота работы, соответствующая 0 ~ Макс.	0	☆
b6-01	Выбор выходной функции AO1	частоте работы 1: Установите частоту, соответствующую 0 ~ Макс.	0	☆
b6-02	Выбор выходной функции AO2	частоте работы 2: Выходной ток, соответствующий 0 ~ удвоенный номинальный ток двигателя 3: Выходной крутящий момент (абсолютное значение), соответствующий 0 ~ двойному номинальному крутящему моменту 4: Выходная мощность, соответствующая 0 ~ удвоенное номинальной мощности двигателя 5: Выходное напряжение,	1	*

		соответствующее 0 ~ 1,2 разовому напряжению шины постоянного тока 6: Частота вращения двигателя, соответствующая 0 ~ Макс. частоте работы 7: Выходной ток, соответствующий 0 ~ 1000 А 8: Выходное напряжение, соответствующее 0 ~ 1000 В 9: Выходной крутящий момент, соответствующий номинальному крутящему моменту (-200% ~ 200%) 10: Импульсный вход, соответствующий 0 Гц ~ 100 кГц 11: АІ1, соответствующий 0 ~ 10 В 12: АІ2, соответствующий 0 ~ 10 В 13: АІ3, соответствующий 0 ~ 10 В 14: Длина, соответствующий 0 ~ 10 В 15: Значение счетчика, соответствующее значению 0 ~ Значение настройки слетчика 16: Настройка связи, соответствующая 0 ~ 32767		
b6-03	Максимальная выходная частота FMP	0,01 κΓц ~ 50,00 κΓц	50,00 кГц	☆
b6-04	Коэффициент смещения AO1	-100.0% ~100.0%	0.0%	☆
b6-05	Коэффициент усиления AO1	-10.00~10.00	1.00	☆
b6-06	Коэффициент смещения AO2	-100.0% ~100.0%	0.00%	☆
b6-07	Коэффициент усиления AO2	-10.00~10.00	1.00	☆
	Группа b7: ви	пртуальный DI (VDI) / виртуальны	ый DO (VDO)	
b7-00	Выбор функции VDI1	0~49	0	*
b7-01	Выбор функции VDI2	0~49	0	*
b7-02	Выбор функции VDI3	0~49	0	*
b7-03	Выбор функции VDI4	0~49	0	*

b7-04	Выбор функции VDI5	0~49	0	*
b7-05	Режим настройки состояния VDI	Разряд единиц: VDI1. 0: Действителен по состоянию VDOх 1: Действителен по b7-06 Разряд десятков: VDI2. 0, 1 (то же, что и VDI1) Разряд сотен: VDI3. 0, 1 (то же, что и VDI1) Разряд тысяч: VDI4. 0, 1 (то же, что и VDI1) Разряд десятков тысяч: VDI5. 0, 1 (то же, что и VDI1)	00000	☆
b7-06	Настройка состояния VDI	Разряд единиц: VDI1. 0: Недействительный 1: Действителен Разряд десятков: VDI2 0, 1 (то же, что и VDI1) Разряд сотен: VDI3 0, 1 (то же, что и VDI1) Разряд тысяч: VDI4 0, 1 (то же, что и VDI1) Разряд десятков тысяч: VDI5. 0, 1 (то же, что и VDI1)	00000	☆
b7-07	Выбор функции для AII, используемый как DI	0~49	0	*
b7-08	Выбор функции для AI2, используемый как DI	0~49	0	*
b7-09	Выбор функции для AI3, используемый как DI	0~49	0	*
b7-10	Действительный выбор состояния для АІ, используемый как DI	Разряд единиц: AI1. 0: действительный уровень 1: низкий уровень действителен Разряд десятков: AI2. 0, 1 (то же, что и номер устройства) Разряд сотен: AI3. 0, 1 (то же, что и номер устройства)	0	☆
b7-11	Выбор функции VDO1	0: соединить с физическим DIx изнутри 1 ~ 40	38	☆
b7-12	Выбор функции VDO2	0: соединить с физическим DIx изнутри 1 ~ 40	38	☆

b7-13	Выбор функции VDO3	0: соединить с физическим Dix изнутри 1 ~ 40	38	☆
b7-14	Выбор функции VDO4	0: соединить с физическим Dix изнутри 1 ~ 40	38	☆
b7-15	Выбор функции VDO5	0: соединить с физическим Dix изнутри 1 ~ 40	38	☆
b7-16	Выходная мощность VDO1	0.0c ~3000.0c	0.0c	☆
b7-17	Выходная мощность VDO2	0.0c ~3000.0c	0.0c	☆
b7-18	Выходная мощность VDO3	0.0c ~3000.0c	0.0c	☆
b7-19	Выходная мощность VDO4	0.0c ~3000.0c	0.0c	☆
b7-20	Выходная мощность VDO5	0.0c ~3000.0c	0.0c	☆
b7-21	Действительный выбор состояния VDO	Разряд единиц: VDO1. 0: положительная логика действительна 1: Реверсивная логика действительна Разряд десятков: VDO2 0, 1 (как и разряд единиц) Разряд сотен: VDO3. 0, 1 (как и разряд единиц) Разряд тысяч VDO4. 0, 1 (как и разряд единиц) Разряд десятков тысяч: VDO5. 0, 1 (как и разряд единиц)	00000	☆
	I	уруппа b8: Корректирование AI / AC)	
b8-00	Идеальное напряжение AI1 калибровки 1	0.500~4.000B	2.000B	☆
b8-01	Напряжение выборки АI1 для калибровки 1	0.500~4.000B	2.000B	☆
b8-02	Идеальное напряжение AI1 калибровки 2	6.000~9.999B	8.000B	☆
b8-03	Напряжение выборки АП для калибровки 2	6.000~9.999B	8.000B	☆
b8-04	Идеальное напряжение AI2 калибровки 1	0.500~4.000B	2.000B	☆
b8-05	Напряжение	0.500~4.000B	2.000B	☆

	выборки AI2 для калибровки 2				
b8-06	Идеальное напряжение AI2 калибровки 2	6.000~9.999B	8.000B	☆	
b8-07	Напряжение выборки AI2 для калибровки 2	6.000~9.999B	8.000B	☆	
b8-08	Идеальное напряжение AI1 калибровки 1	0.500~4.000B	2.000B	☆	
b8-09	Напряжение выборки АI1 для калибровки 1	0.500~4.000B	2.000B	☆	
b8-10	Идеальное напряжение AI1 калибровки 2	6.000~9.999B	8.000B	☆	
b8-11	Напряжение выборки АІЗ для калибровки 2	6.000~9.999B	8.000B	☆	
b8-12	Идеальное напряжение AO1 калибровки 1	0.500~4.000B	2.000B	☆	
b8-13	Измеренное напряжение AO1 калибровки 1	0.500~4.000B	2.000B	☆	
b8-14	Идеальное напряжение AO1 калибровки 2	6.000~9.999B	8.000B	☆	
b8-15	Измеренное напряжение AO1 калибровки 2	6.000~9.999B	8.000B	☆	
b8-16	Идеальное напряжение AO2 калибровки 1	0.500~4.000B	2.000B	☆	
b8-17	Измеренное напряжение АО2 калибровки 1	0.500~4.000B	2.000B	☆	
b8-18	Идеальное напряжение AO2 калибровки 2	6.000~9.999B	8.000B	☆	
b8-19	Измеренное напряжение AO2 калибровки 2	6.000~9.999B	8.000B	☆	
	Группа b9: клавиатура и дисплей				
b9-00	Кнопка СТОП /	0: клавиша СТОП / СБРОС	0	☆	

	СБРОС	включена только при управлении с панели управления 1: кнопка СТОП / СБРОС включена в любом режиме работы		
b9-01	Выбор функции MF.K	0: ключ МГ.К отключен 1: Переключение между управлением панели управления и дистанционным управлением (терминал или связь) 2: Переключение между прямым вращением и обратным вращением 3: Передний JOG 4: Обратный JOG	3	☆
b9-02	Параметры работы светодиодного дисплея 1	0000 ~ FFFF Бит00: частота работы 1 (Гц) Бит01: установить частоту (Гц) Бит02: напряжение шины постоянного тока (В) Бит03: Выходное напряжение (В) Бит04: Выходной ток (А) Бит05: Выходная мощность (кВт) Бит06: выходной крутящий момент (%) Бит07: состояние входа DI Бит08: состояние выхода DO Бит09: напряжение AI1 (В) Бит10: напряжение AI2 (В) Бит11: напряжение AI3 (В) Бит12: значение счетчика Бит13: значение длины Бит14: отображение скорости загрузки Бит15: установка ПИД- регулятора	001f	☆
b9-03	Индикация светодиодных индикаторов 2	0000 ~ FFFF Бит00: обратная связь с ПИД Бит01: этап ПЛК Бит02: Импульсная входная частота (кГц) Бит03: частота работы 2 (Гц) Бит04: оставшееся время работы Бит05: напряжение АІ1 перед калибровкой (V) Бит06: напряжение АІ2 перед калибровкой (В) Бит07: напряжение АІ3 перед калибровкой (В) Бит07: напряжение АІ3 перед калибровкой (В) Бит09: текущее время включения (час) Бит10: текущее время работы	0x0800	☆

		(мин) Бит11: Индикация температуры радиатора (° С) Бит12: значение настройки связи Бит13: частота обратной связи энкодера (Гц) Бит14: Основная частота Х-дисплей (Гц) Бит15: Вспомогательная частота Y дисплей (Гц)				
b9-04	Светодиодный индикатор остановки	0000 ~ FFFF Бит00: Установленная частота (Гц) Бит01: Напряжение канала (В) Бит02: состояние входа DI Бит03: состояние выхода DO Бит04: напряжение AI1 (В) Бит05: напряжение AI2 (В) Бит06: напряжение AI3 (В) Бит07: значение счетчика Бит08: значение длины Бит09: этап ПЛК Бит10: Скорость загрузки Бит11: настройка ПИД Бит12: Частота установки импульса (кГц) Бит13: Индикация температуры радиатора (° C)	0x2033	☆		
b9-05	Коэффициент отображения скорости загрузки	0.0001~ 6.5000	1.0000	☆		
b9-06	Количество знаков после запятой для отображения скорости загрузки	0: 0 десятичный дисплей 1: 1 десятичный дисплей 2: 2 десятичный дисплей 3: 3 десятичный дисплей	1	☆		
b9-07	Температура радиатора	0.0°C ~100.0°C		•		
b9-08	Накопительное время включения питания	0~65535 ч		•		
b9-09	Накопительное время работы	0~65535 ч		•		
b9-10	Накопительное энергопотребление	0 ~ 65535 кВтч		•		
	Группа bA: Параметры обмена данными					
bA-00	Выбор типа обмена данными	0: протокол Modbus	0	☆		
bA-01	Настройка бод коэффициента	Разряд единиц: коэффициент передачи по протоколу Modbus. 0: 300 BPS 1: 600 BPS	5	☆		

		2: 1200 BPS 3: 2400 BPS 4: 4800 BPS 5: 9600 BPS 6: 19200 BPS 7: 38400 BPS		
bA-02	Формат данных Modbus	0: Нет проверки, формат данных <8, N, 2> 1: Проверка четности, формат данных <8, E, 1> 2: Проверка нечетности, формат данных <8, O, 1> 3: Нет проверки, формат данных <8, N, 1> Действительно для Modbus	0	☆
bA-03	Адрес широковещания	0 ~ 247 (0: широковещательный адрес) Действительно для Modbus	1	☆
bA-04	Задержка ответа Modbus	0 ~ 20 мс Действует только для Modbus	2 мс	☆
bA-05	Время ожидания связи	0.0c: недействительный 0.1c ~ 60.0c Действительно для Modbus	0.0c	☆
bA-06	Выбор формата передачи данных протокола Modbus	Разряд единиц: протокол Modbus. 0: Нестандартный протокол Modbus 1: Стандартный протокол Modbus	1	☆
bA-07	Текущее разрешение связи	0: 0.01A 1: 0.1A	0	☆
	Гр	уппа bb: настройка ошибок и защит	Ъ	
bb-00	Выбор типа G / Р	0: тип Р 1: тип G	1	☆
bb-01	Выбор защиты от перегрузки двигателя	0: Отключено 1: Включено	0	☆
bb-02	Усиление защиты от перегрузки двигателя	0.20~10.00	1.00	☆
bb-03	Коэффициент предварительного предупреждения о перегрузке двигателя	50%~100%	80%	☆
bb-04	Напряжение при повышенном напряжении	0~100	0	☆

bb-05	Защитное напряжение защиты от перенапряжения	120%~150%	130%	☆
bb-06	Превышение текущего запаса	0~100	20	☆
bb-07	Превышение тока защитного тока	100%~200%	180%	☆
bb-08	Защита от короткого замыкания на землю после включения питания	0: Отключено 1: Включено	1	☆
bb-09	Время автоматического сброса ошибок	0~99	0	☆
bb-10	Выбор действия реле при автоматическом сбросе сбоя	0: Не действовать 1: Действие	0	☆
bb-11	Временной интервал автоматического сброса	0.1c~100.0c	1.0c	☆
bb-12	Защита от потери фазы входа / выбор переключателя защиты от замыкания	0: Отключено 1: Включено	0	☆
bb-13	Защита от потери фазы	0: Отключено 1: Включено	0	☆
bb-14	Защита от нагрузки	0: Отключено 1: Включено	0	☆
bb-15	Уровень обнаружения нагрузки	0,0% ~ 100,0% (номинальный ток двигателя)	1.0%	☆
bb-16	Время обнаружения нагрузки	0.0c~60.0c	1.0c	☆
bb-17	Значение обнаружения превышения скорости	0,0% ~ 50,0% (максимальная частота)	20.0%	☆
bb-18	Время обнаружения превышения скорости	0.0c~60.0c	1.0c	☆
bb-19	Значение	0,0% ~ 50,0% (максимальная	20.0%	☆

	обнаружения слишком большого отклонения скорости	частота)		
bb-20	Время обнаружения слишком большого отклонения скорости	0.0c~60.0c	5c	☆
bb-21	Выбор действия при мгновенном сбое питания	0: Недействительный 1: Замедление 2: Замедление для остановки	0	☆
bb-22	Время ожидания ралли напряжения при мгновенном сбое питания	0.00c ~100.00c	0.00c	
bb-23	Определенное напряжение мгновенного отключения питания	60,0% ~ 100,0% (стандартное напряжение шины)	80.0%	☆
bb-24	Судящее напряжение мгновенного восстановления питания	60,0% ~ 100,0% (стандартное напряжение шины)	90.0%	☆
bb-25	Тип датчика температуры двигателя	0: Нет датчика температуры 1: PT100 2: PT1000	0	☆
bb-26	Порог защиты от перегрева двигателя	0°C~200°C	0	☆
bb-27	Порог предохранения от перегрева двигателя	0°C~200°C	120°C	☆
bb-28	Порог перенапряжения	200.0~2500.0 B	810B	☆
bb-29	Под напряжением	50.0%~150.0%	100.0%	☆
bb-30	Коэффициент использования тормозного блока	0%~100%	100%	☆
bb-31	Предел быстрого тока	0: Отключено 1: Включено	1	☆
bb-32	Выбор действия защиты от сбоев 1	Разряд единиц: Перегрузка двигателя, Err11. 0: Свободная остановка 1: Остановка в соответствии с режимом останова	00000	☆

		2: Продолжить выполнение Разряд десятков: потеря фазы питания, Err12. Такой же, как и разряд единиц. Разряд сотен: потеря фазы выходной мощности, Err13. Такой же, как и разряд единиц. Разряд тысяч: Ошибка внешнего оборудования, Err15. То же, что и цифра устройства Разряд десятка тысяч: Ошибка связи, Err16. Такой же, как и разряд единиц.		
bb-33	Выбор действия защиты от отказа 2	Разряд единиц: Ошибка карты Encoder / PG, Err20. 0: Свободная остановка Разряд десятков: ошибка чтениязаписи EEPROM, Err21. 0: Свободная остановка 1: остановка в соответствии с режимом останова Разряд сотен: Зарезервировано Разряд тысяч: Перегрев двигателя, Err25. Такой же, как и разряд единиц в bb-32 Разряд десятка тысяч: достигнуто время работы, Err26. Такой же, как и разряд единиц в bb-32	00000	☆
bb-34	Выбор действия защиты от сбоев 3	Разряд единиц: Пользовательская ошибка 1, Err27. Такой же, как и разряд единиц в bb-32 Разряд десятков: Пользовательская ошибка 2, Err28. Такой же, как и разряд единиц в bb-32 Разряд сотен: достигнуто время нарастания мощности, Err29. Такой же, как и разряд единиц в bb-32 Разряд тысяч: выгрузка, Err30. 0: Свободная остановка 1: Остановка в соответствии с режимом останова 2: Уменьшить до 7% от номинальной частоты двигателя и продолжить работу. Если нагрузка восстановится, она автоматически восстановится до заданной частоты. Разряд десятка тысяч: потеря обратной связи ПИД во время работы, Err31. Такой же, как и разряд единиц в	00000	☆

		bb-32		
bb-35	Выбор действия защиты от сбоев 4	Разряд единиц: слишком большое отклонение скорости, Err42 Такой же, как и разряд единиц в bb-32 Разряд десятков: превышение скорости двигателя, Err43. Такой же, как и разряд единиц в bb-32 Разряд сотен: ошибка начального положения, Err51. Такой же, как и разряд единиц в bb-32	00000	☆
bb-36	Выбор частоты для продолжения работы ошибки	0: Текущая рабочая частота 1: Установить частоту 2: Верхний предел частоты 3: Нижний предел частоты 4: Резервная частота аномалий (bb-37)	0	☆
bb-37	Резервная частота аномалий	0,0% ~ 100,0% (максимальная частота)	1.0%	☆
bb-38	Усиление защиты от перегрузки инвертора	90%-150%	100%	☆
	Гру	тпа bC: Диагностика неисправност	гей	
bC-00	1-й тип неисправности	-	-	•
bC-01	2-й тип неисправности	-	-	•
bC-02	3-й тип неисправности (последний)	-	-	•
bC-03	Частота последней неисправности	-	-	•
bC-04	Ток последней неисправности	-	-	•
bC-05	Напряжение шины постоянного тока последней неисправности	-	-	•
bC-06	Состояние входных клемм последней неисправности	-	-	•
bC-07	Состояние выходного терминала последней	-	-	•

	неисправности			
bC-08	Частотный			
DC-08	преобразователь состояния последней неисправности			•
bC-09	Время включения последней неисправности	-	-	•
bC-10	Время работы последней ошибки	-	-	•
bC-11	Частота 2-й неисправности	-	-	•
bC-12	Ток 2-й неисправности	-	-	•
bC-13	Напряжение шины постоянного тока 2-го отказа	-	-	•
bC-14	Состояние входной клеммы 2-й неисправности	-	-	•
bC-15	Состояние выходного терминала 2-й неисправности	-	-	•
bC-16	Состояние преобразователя частоты 2-го отказа	-	-	•
bC-17	Время включения 2-й неисправности	-	-	•
bC-18	Время работы 2-й неисправности	-	-	•
bC-19	Частота 1-й неисправности	-	-	•
bC-20	Ток 1-й неисправности	-	-	•
bC-21	Напряжение шины постоянного тока 1-й неисправности	-	-	•
bC-22	Состояние входного терминала 1-й неисправности	-	-	•
bC-23	Состояние выходного терминала 1-й	-	-	•

	неисправности			
1.0.24				_
bC-24	Состояние преобразователя частоты 1-го отказа	-	-	•
bC-25	Время включения 1-й неисправности	-	-	•
bC-26	Время работы 1-й неисправности	-	-	•
		Группа bd: Защита мотора		
bd-00	Аварийный уровень тока	0.0~600A	0.00	☆
bd-01	Время превышения аварийного уровня тока	0.0~600 c	0.00	¥
	Гру	ппа С0: Функция ПИД-регулирова	кин	
C0-00	Источник установки ПИД- регулятора	0: C0-01 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: Настройка связи 6: Многофункциональный	0	☆
C0-01	Цифровая настройка ПИД	0.0%~100.0%	50.0%	☆
C0-02	Время изменения настройки ПИД-регулирования	0.00c~650.00c	0.00c	☆
C0-03	Источник обратной связи ПИД	0: AI1 1: AI2 2: AI3 3: Настройка импульса (HDI) 4: AI1 - AI2 5: AI1 + AI2 6: MAX (I AI1 I, I AI2 I) 7: MIN (I AI1 I, I AI2 I) 8: Настройка связи	0	☆
C0-04	Направление действия ПИД	0: Прямое действие 1: Обратное действие	0	☆
C0-05	Диапазон настройки обратной связи ПИД	0~65535	1000	☆
C0-06	Пропорциональное усиление KP1	0.00~10.0	20.0	☆
C0-07	Интегральное время ТП	0.01c~10.00c	2.00c	☆

C0-08	Дифференциальное время TD1	0.000c~10.000c	0.000c	☆
C0-09	Пропорциональное усиление KP2	0.00~10.00	20.0	☆
C0-10	Интегральное время ТІ2	0.01c~10.00c	2.00c	☆
C0-11	Дифференциальное время TD2	0.00c~10.00c	0.000c	☆
C0-12	Состояние переключения параметра	0: нет переключения 1: Переключение через DI 2: Автоматическое переключение на основе отклонения	0	☆
C0-13	Отклонение 1 переключения параметра ПИД	0,0% ~ C0-14	20.0%	☆
C0-14	Отклонение 2 переключения параметра ПИД	C0-13 ~ 100.0%	80.0%	☆
C0-15	Интегральное свойство ПИД	Разряд единиц: Интеграл разделен. 0: Недействительный 1: Действителен Разряд десятков: прекратить интегральную работу, когда выход достигнет предела. 0: продолжить интегральную операцию 1: Прекратить интегральную работу	00	*
C0-16	Начальное значение ПИД	0.0%~100.0%	0.0%	☆
C0-17	Время выдержки начального значения ПИД-регулятора	0.00c~650.00c	0.00c	☆
C0-18	Верхний предел частоты обратного вращения ПИД-регулятора	0.00 ~ максимальная частота	2.00 Гц	☆
C0-19	Предел отклонения ПИД-регулятора	0.0%~100.0%	0.0%	☆
C0-20	Предел ПИД- регулирования	0.00%~100.0%	0.10%	☆
C0-21	Максимальное положительное отклонение между двумя выходами ПИД	0.00%~100.00%	1.00%	☆

C0-22	Максимальное отрицательное отклонение между двумя выходами ПИД	0.00%~100.00%	1.00%	☆
C0-23	Время фильтрации обратной связи ПИД-регулятора	0.00c~60.00c	0.00c	☆
C0-24	Время выходного фильтра ПИД- регулятора	0.00c~60.00c	0.00c	☆
C0-25	Значение обнаружения потери обратной связи ПИД-регулятора	0,0%: отсутствие оценки потери обратной связи 0,1% ~ 100,0%	0.0%	**
C0-26	Время обнаружения потери обратной связи ПИД-регулятора	0.0c~20.0c	0.0c	☆
C0-27	Работа ПИД при остановке	0: Нет операции ПИД- регулирования при остановке 1: ПИД-операция при остановке	0	☆
		Группа С1: Многофункциональная		
C1-00	Многофункционал ьный 0	-100.0%~100.0%	0.0%	☆
C1-01	Многофункционал ьный 1	-100.0%~100.0%	0.0%	☆
C1-02	Многофункционал ьный 2	-100.0%~100.0%	0.0%	☆
C1-03	Многофункционал ьный 3	-100.0%~100.0%	0.0%	☆
C1-04	Многофункционал ьный 4	-100.0%~100.0%	0.0%	☆
C1-05	Многофункционал ьный 5	-100.0%~100.0%	0.0%	☆
C1-06	Многофункционал ьный 6	-100.0%~100.0%	0.0%	☆
C1-07	Многофункционал ьный 7	-100.0%~100.0%	0.0%	☆
C1-08	Многофункционал ьный 8	-100.0%~100.0%	0.0%	☆
C1-09	Многофункционал ьный 9	-100.0%~100.0%	0.0%	☆

С1-11 Многофункционал ьный 12 -100.0%-100.0% 0.0% ☆ С1-12 Многофункционал ьный 12 -100.0%-100.0% 0.0% ☆ С1-13 Многофункционал ьный 13 -100.0%-100.0% 0.0% ☆ С1-14 Многофункционал ьный 14 -100.0%-100.0% 0.0% ☆ С1-15 Многофункционал ьный источник 0 0.0%-100.0% 0.0% ☆ С1-16 Многофункционал ьный источник 0 0.0%-100.0% 0.0% ☆ С1-16 Многофункционал ьный источник 0 0.0%-100.0% 0.0% ☆ Ката на	C1-10	Многофункционал	-100.0%~100.0%	0.0%	☆
C1-12 Многофункционал ыный 12 -100.0%~100.0% 0.0% ☆ C1-13 Многофункционал ыный 13 -100.0%~100.0% 0.0% ☆ C1-14 Многофункционал ыный 15 -100.0%~100.0% 0.0% ☆ C1-15 Многофункционал ыный 15 -100.0%~100.0% 0.0% ☆ C1-16 Многофункционал ыный источник 0 0: Установите С1-00 1: Al1 2: Al2 3: Al3 3: Al3 4: Настройка импульсов (HDI) 5: ПИД 6: Установите заданиую частоту (b0-12), измененную с помощью терминала ВВЕРХ / ВНИЗ 0 ☆ Группа С2: простой ПЛК С2-00 Простой режим работы ПЛК 0: остановка после того, как преобразователь частоты работает один шкл 1: сохранять конечные значения после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь частоты работает один шкл 2: повторить после того, как преобразователь час	C1-11		-100.0%~100.0%	0.0%	☆
C1-13 Многофункционал ьный 13 -100.0%~100.0% 0.0% ☆ C1-14 Многофункционал ьный 14 -100.0%~100.0% 0.0% ☆ C1-15 Многофункционал ьный 15 -100.0%~100.0% 0.0% ☆ C1-16 Многофункционал ьный источник 0 0: Установите С1-00 1: АП 2: АП 2: АП 3: АП 3: АП 3: АП 3: АП 3: АП 3: АП 4: Настройка импульсов (НDI) 5: ПИЛ 6: Установите заданиую частоту (бb-12), измененную с помощью терминала ВВЕРХ / ВНИЗ 0: остановка после того, как преобразователь частоты работает один цикл 1: Сохранять консчные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после от один пикл 2: повторить после выключения питания 1: запись после овыключения питания 1: запись после овыключения питания Разрад десятков: Запись остановки 1: запись после оста	C1-12	Многофункционал	-100.0%~100.0%	0.0%	☆
C1-14 Многофункционал ьный 14 -100.0%~100.0% 0.0% ☆ C1-15 Многофункционал ьный 15 -100.0%~100.0% 0.0% ☆ C1-16 Многофункционал ьный источник 0 0. Установите С1-00 1 2. AI1 2. AI1 2. AI2 3. AI3 4. Настройка импульсов (НDI) 5. IIИД 6. Установите заданиую частоту (ю0-12), измененную с помощью терминала ВВЕРХ / ВНИЗ 0. остановка после того, как преобразователь частоты работает один пикл 1: сохранять конечные значения после того, как преобразователь частоты работает один пикл 2: повторить после того, как преобразователь частоты работает один пикл 2: повторить после того, как преобразователь частоты работает один пикл 0. нет записи после выключения питания 1: запись после остановки 1: запись п	C1-13	Многофункционал	-100.0%~100.0%	0.0%	☆
БНЫЙ 15 0: Установите C1-00 0 ☆ С1-16 Многофункциональный источник 0 0: Установите C1-00 0 ☆ 1: АП 2: А12 3: А13 4: Настройка импульсов (HDI) 5: ПИД 6: Установите заданную частоту (b0-12), измененную с помощью терминала ВВЕРХ / ВНИЗ Труппа C2: простой ПЛК С2-00 Простой режим работы ПЛК О: остановка после того, как преобразователь частоты работает один цикл 1: сохранять конечные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 1: запись после выключения питания Разряд десятков: Запись остановки 1: запись после остановки 1: запись посл	C1-14	Многофункционал	-100.0%~100.0%	0.0%	☆
Биный источник 0 1: АП 2: АП 2: АП 2: АП 2: АП 3: АП 34: Настройка импульсов (НDI) 5: ПИД 6: Установите заданную частоту (b0-12), измененную с помощью терминала ВВЕРХ / ВНИЗ Группа С2: простой ПЛК С2-00 Простой режим работы ПЛК 0: остановка после того, как преобразователь частоты работает один цикл 1: сохранять конечные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 0: нет записи после выключения питания 0: нет запись после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки 0: нет записи после остановки 1: запись после остановки	C1-15	1 -	-100.0%~100.0%	0.0%	☆
C2-00 Простой режим работы ПЛК 0: остановка после того, как преобразователь частоты работает один цикл 1: охранять конечные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 2: повторить после об исчезновении питания. О: нет запись побразователь частоты работает один цикл 0: нет записи после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки. О: нет записи после остановки 1: запись после остановки 00 ☆ C2-02 Время работы простого сегмента ПЛК 0 0,0 (ч) ~ 6553.5c (ч) 0,0 c (ч) ☆ C2-03 Время разгона / торможения простого сегмента ПЛК 0 0~3 0 ☆	C1-16		1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: ПИД 6: Установите заданную частоту (b0-12), измененную с помощью	0	☆
работы ПЛК преобразователь частоты работает один цикл 1: сохранять конечные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты работает один цикл 1: запись после того, как преобразователь частоты работает один цикл 1: запись после выключения питания. 0: нет запись после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки 1: запись после объемания			Группа С2: простой ПЛК		
Записи ПЛК исчезновении питания. 0: нет записи после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки 0: нет записи после остановки 1: запись после остановки 1: запись после остановки 0,0 с (ч)	C2-00		преобразователь частоты работает один цикл 1: сохранять конечные значения после того, как преобразователь частоты работает один цикл 2: повторить после того, как преобразователь частоты	0	*
простого сегмента ПЛК 0 С2-03 Время разгона / торможения простого сегмента ПЛК 0 ПЛК 0 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	C2-01		исчезновении питания. 0: нет записи после выключения питания 1: запись после выключения питания Разряд десятков: Запись остановки. 0: нет записи после остановки	00	☆
торможения простого сегмента ПЛК 0	C2-02	простого сегмента	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
С2-04 Время работы 0,0 (ч) ~ 6553.5с (ч) 0,0 с (ч)	C2-03	торможения простого сегмента	0~3	0	☆
	C2-04	Время работы	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆

	простого сегмента ПЛК 1			
C2-05	Время разгона / торможения простого сегмента ПЛК 1	0~3	0	☆
C2-06	Время работы простого сегмента ПЛК 2	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-07	Время ускорения / замедления простого сегмента ПЛК 2	0~3	0	**
C2-08	Время работы простого сегмента ПЛК 3	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-09	Время разгона / торможения простого сегмента ПЛК 3	0~3	0	☆
C2-10	Время работы простого сегмента ПЛК 4	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-11	Время разгона / торможения простого ПЛК сегмента 4	0~3	0	☆
C2-12	Время работы простого сегмента PLC 5	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-13	Время разгона / торможения простого сегмента ПЛК 5	0~3	0	☆
C2-14	Время работы простого сегмента ПЛК 6	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-15	Время разгона / торможения простого сегмента ПЛК 6	0~3	0	☆
C2-16	Время работы простого сегмента ПЛК 7	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
C2-17	Время разгона / торможения простого сегмента ПЛК 7	0~3	0	☆

	Т	1	
Время работы простого сегмента ПЛК 8	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 8	0~3	0	☆
Время работы простого сегмента ПЛК 9	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 9	0~3	0	☆
Время работы простого сегмента ПЛК 10	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 10	0~3	0	☆
Время работы простого сегмента ПЛК 11	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 11	0~3	0	☆
Время работы простого сегмента ПЛК 12	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 12	0~3	0	☆
Время работы простого сегмента ПЛК 13	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время разгона / торможения простого сегмента ПЛК 13	0~3	0	☆
Время работы простого сегмента ПЛК 14	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆
Время ускорения / замедления простого сегмента ПЛК 14	0~3	0	☆
	простого сегмента ПЛК 8 Время разгона / торможения простого сегмента ПЛК 8 Время работы простого сегмента ПЛК 9 Время работы простого сегмента ПЛК 9 Время работы простого сегмента ПЛК 10 Время разгона / торможения простого сегмента ПЛК 10 Время работы простого сегмента ПЛК 11 Время работы простого сегмента ПЛК 12 Время работы простого сегмента ПЛК 12 Время работы простого сегмента ПЛК 12 Время работы простого сегмента ПЛК 13 Время работы простого сегмента ПЛК 13	ПЛК 8 Время разгона / торможения простого сегмента ПЛК 8 Время работы простого сегмента ПЛК 9 Время разгона / торможения простого сегмента ПЛК 9 Время работы простого сегмента ПЛК 10 Время разгона / торможения простого сегмента ПЛК 10 Время разгона / торможения простого сегмента ПЛК 10 Время работы простого сегмента ПЛК 10 Время работы простого сегмента ПЛК 11 Время разгона / торможения простого сегмента ПЛК 11 Время разгона / торможения простого сегмента ПЛК 11 Время разгона / торможения простого сегмента ПЛК 12 Время разгона / торможения простого сегмента ПЛК 12 Время разгона / торможения простого сегмента ПЛК 13 Время работы простого сегмента ПЛК 14 Время ускорения / замедления простого сегмента ПЛК 14 Время ускорения / замедления простого сегмента пЛК 14	простого сегмента ПЛК 8 0-3 0 Время разгона / торможения простого сегмента ПЛК 9 0,0 (ч) ~ 6553.5c (ч) 0,0 c (ч) Время разгона / торможения простого сегмента ПЛК 10 0~3 0 Время разгона / торможения простого сегмента ПЛК 10 0,0 (ч) ~ 6553.5c (ч) 0,0 c (ч) Время разгона / торможения простого сегмента ПЛК 11 0~3 0 Время разгона / торможения простого сегмента ПЛК 11 0~3 0 Время разгона / торможения простого сегмента ПЛК 12 0~3 0 Время разгона / торможения простого сегмента ПЛК 13 0~3 0 Время разгона / торможения простого сегмента ПЛК 14 0~3

C2-32	Время работы простого сегмента ПЛК 15	0,0 (ч) ~ 6553.5с (ч)	0,0 с (ч)	☆	
C2-33	Время разгона / торможения простого сегмента PLC 15	0~3	0	☆	
C2-34	Единица времени простого запуска ПЛК	0: s (секунда) 1: ч (час)	0,0 с (ч)	☆	
	Группа С3: част	гота поворота, фиксированная длин	а и количество)	
C3-00	Режим настройки частоты вращения	0: относительно центральной частоты 1: относительно максимальной частоты	0	☆	
C3-01	Амплитуда частоты качаний	0.0%~100.0%	0.0%	☆	
C3-02	Амплитуда частоты качаний в режиме максимального отклонения	0.0%~50.0%	0.0%	☆	
C3-03	Частотный цикл качания	0,1 c ~ 3000.0c	10.0c	☆	
C3-04	Коэффициент времени нарастания треугольной волны	0.1%~100.0%	50.0%	☆	
C3-05	Установленная длина	0 м ~ 65535 м	1000 м	☆	
C3-06	Фактическая длина	0 м ~ 65535 м	0 м	☆	
C3-07	Количество импульсов на метр	0.1~6553.5	100.0	☆	
C3-08	Установить значение счета	1~6553.5	1000	☆	
C3-09	Обозначенное значение счета	1~6553.5	1000	☆	
	Группа d0: Параметры двигателя 1				
d0-00	Номинальная мощность двигателя	0,1 кВт ~ 1000,0 кВт	Зависит от модели	*	
d0-01	Номинальное напряжение двигателя	1 B ~ 2000 B	Зависит от модели	*	

d0-02	Номинальный ток двигателя	$0,01A \sim 655,35~A$ (мощность преобразователя частоты \leq 55 кВт) $0,1A \sim 6553,5~A$ (мощность преобразователя частоты \geq 75 кВт)	Зависит от модели	*
d0-03	Номинальная частота двигателя	0.01 Гц ~ максимальная частота	50.00Гц	*
d0-04	Номинальная частота вращения двигателя	1 об / мин ~ 65535 об / мин	Зависит от модели	*
d0-05	Сопротивление статора (асинхронный двигатель)	0,001 Ом ~ 65,535 Ом (мощность преобразователя частоты менее 55 кВт) 0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	Зависит от модели	*
d0-06	Сопротивление ротора (асинхронный двигатель)	0,001 Ом ~ 65,535 Ом (мощность преобразователя частоты менее 55 кВт) 0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	Зависит от модели	*
d0-07	Индуктивное реактивное сопротивление утечки (асинхронный двигатель)	$0,01~\text{м}\Gamma\sim655,35~\text{м}\Gamma\text{H}$ (мощность преобразователя частоты менее 55 кВт) $0.001\text{m}H\sim65.535~\text{m}H$ (мощность преобразователя частоты ≥ 75 кВт)	Зависит от модели	*
d0-08	Взаимное индуктивное сопротивление (асинхронный двигатель)	$0,01 \ \text{м}\Gamma \sim 655,35 \ \text{м}\Gamma\text{H}$ (мощность преобразователя частоты менее 55 кВт) $0.001 \ \text{m}H \sim 65.535 \ \text{m}H$ (мощность преобразователя частоты ≥ 75 кВт)	Зависит от модели	*
d0-09	Ток холостого хода (асинхронный двигатель)	$0,01A \sim d0-02$ (Мощность преобразователя частоты ≤ 55 кВт) $0.1A$ до $d0-02$ (Мощность преобразователя частоты ≥ 75 кВт)	Зависит от модели	*
d0-15	Сопротивление статора (синхронный двигатель)	0,001 Ом ~ 65,535 Ом (мощность преобразователя частоты менее 55 кВт) 0,0001 Ом ~ 6,5535 Ом (мощность преобразователя частоты ≥75 кВт)	Зависит от модели	*
d0-16	Индуктивность вала D (синхронный двигатель)	0,01 мГн ~ 655,35 мГн (мощность преобразователя частоты менее 55 кВт) 0,001 ~ 65,535 мГн (мощность преобразователя частоты ≥75	Зависит от модели	*

		кВт)		
d0-17	Индуктивность вала Q (синхронный двигатель)	$0,01 \text{ мГн} \sim 655,35 \text{ мГн}$ (мощность преобразователя частоты менее 55 кВт) $0,001 \sim 65,535 \text{ мГн}$ (мощность преобразователя частоты $\geq 75 \text{ кВт}$)	Зависит от модели	*
d0-18	Обратный ЭДС (синхронный двигатель)	0,1 B ~ 6553,5 B	Зависит от модели	*
d0-19	Импульсы энкодера за оборот	1~32767	1024	*
d0-20	Тип энкодера	0: инкрементный энкодер ABZ 1: Резольвер 2: Инкрементный энкодер UVW 3: Зарезервировано 4: Проводной датчик UVW	0	*
d0-21	Последовательност ь фаз А / В инкрементного датчика ABZ	0: Вперед 1: Резерв	0	*
d0-22	Угол установки энкодера	0.0°~359.9°	0.0°	*
d0-23	U, V, W - последовательност ь фаз UVW- энкодера	0: Вперед 1: Резерв	0	*
d0-24	Уклонение угла энкодера UVW	0.0°~359.9°	0.0°	*
d0-28	Число пар полюсов резольвера	1~99	1	*
d0-29	Время обнаружения повреждения проводов датчик	0.0c: Никаких действий 0.1c ~ 10.0c	0.0c	*
d0-30	Выбор автонастройки двигателя 1	0: нет автоматической настройки 1: Статическая автонастройка асинхронного двигателя 2: Полная автонастройка асинхронного двигателя 11: Автонастройка синхронного двигателя с нагрузкой 12: Автонастройка синхронного двигателя без нагрузки	0	*
Группа d1: параметры векторного управления				
d1-00	Выбор скорости / крутящего момента	0: управление скоростью 1: Управление крутящим	0	*

		моментом		
d1-01	Пропорциональное усиление контура скорости 1(Kp1)	0.01~10.00	0.30	☆
d1-02	Интегральное время цикла контура 1 (Ti1)	0.01c~10.00c	0.50 с	☆
d1-03	Частота переключения 1	0.00 ~ d1-06	5.00 Гц	☆
d1-04	Пропорциональное усиление петли скорости 2 (KP2)	0.01~10.00	0.20	☆
d1-05	Время интегрирования контура скорости 2 (Ti2)	0.01c~10.00c	1.00 с	☆
d1-06	Частота переключения 2	d1-03 ~ максимальная выходная частота	10.00 Гц	☆
d1-07	Усиление скольжения	50%200%	100%	☆
d1-09	Усиление превышения в режиме управления моментом	0~200	64	☆
d1-10	Источник верхнего предела момента в режиме управления скоростью	0: d1-16 1: AI1 2: AI2 3: AI3 4: Импульсы (HDI) 5: Ком-порт	0	☆
d1-11	Предел эл. момента	0.0%~200.0%	150.0%	☆
d1-14	Пропорциональное усиление петли тока возбуждения	0~30000	2000	☆
d1-15	Интегральное усиление токовой петли возбуждения	0~30000	1300	☆
d1-16	Пропорциональное усиление токовой петли	0~30000	2000	☆
d1-17	Интегральное усиление токовой петли	0~30000	1300	☆

				_
d1-18	Интегральное свойство петли контроля скорости	0: Интегральное разделение не действует 1: Интегральное разделение действует	0	☆
d1-21	Коэфф. макс. вых. напряжения	100%~110%	105%	☆
d1-22	Макс. коэфф. крутящего момента в области ослабления поля	50%~200%	100%	☆
d1-24	Источник настройки крутящего момента в управлении крутящим моментом	0: Цифровая настройка (d1-27) 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: Настройка связи 6: MIN (AI1, AI2) 7: MAX (AI1, AI2) Полный диапазон значений 1 ~ 7 соответствует цифровой настройке d1-27.	0	☆
d1-26	Цифровая настройка крутящего момента в управлении крутящим моментом	-200.0%~200.0%	150.0%	☆
d1-28	Предел скорости переднего хода	0.00 Гц b0-13	50.00Гц	☆
d1-29	Реверсивный предел скорости в управлении крутящим моментом	00.00 Гц b0-13	50.00Гц	☆
d1-30	Время разгона в режиме управления моментом	0.00c~650.00c	0.00c	
	Γŗ	уппа d2: Параметр управления V /	F	
d2-00	Настройка кривой V / F	0: линейный V / F 1: многоточечный V / F 2: квадратный V / F 3: 1,2 V / F 4: 1,4-сила V / F 6: 1,6-сила V / F 8: мощность V / F с мощностью 1,8 10: полное разделение V / F 11: разделение V / F	0	*
d2-01	Повышение крутящего момента	0,0% (крутящий момент) 0,1% ~ 30,0%	4.0%	*

d2-02	Частота среза крутящего момента	0,0% ~ 80,0% Фактическая частота отсечки = Номинальная частота двигателя * (d2-02)	30.0%	*
d2-03	Многоточечная частота V / F 1 (F1)	0,00 Γц ~ d2-05	0,00 Гц	☆
d2-04	Многоточечное напряжение V / F 1 (V1)	0.0%~100.0%	0.0%	☆
d2-05	Многоточечная частота V / F 2 (F2)	d2-03 к d2-07	0,00 Гц	☆
d2-06	Многоточечное напряжение V / F 2 (V2)	0.0%~100.0%	0.0%	☆
d2-07	Многоточечная частота V / F 3 (F3)	d2-05~ максимальная частота	0,00 Гц	☆
d2-08	Многоточечное напряжение V / F 3 (V3)	0.0%~100.0%	0.0%	☆
d2-09	Коэффициент компенсации скольжения V / F	0.0%~200.0%	0.0%	☆
d2-11	Усиление подавления колебаний V / F	0~100	40	☆
d2-12	Коэфф. усиления подавления колебаний	0~4	3	☆
d2-13	Источник напряжения для разделения V / F	0: цифровая настройка (d2-13) 1: AI1 2: AI2 3: AI3 4: Настройка импульсов (HDI) 5: Многофункциональный 6: Простой ПЛК 7: ПИД 8: Настройка связи (Примечание: 100.0% соответствует рейтингу напряжение двигателя)	0	☆
d2-14	Цифровая настройка напряжения для разделения V / F	0 В ~ номинальное напряжение двигателя	0 B	☆
d2-15	Время нарастания напряжения V / F-разделения	0.0с ~ 1000.0с Примечание: Это указывает на время, когда напряжение возрастает от 0 В ~ номинального напряжения	0.0c	☆

		двигателя.			
Группа d6: параметры оптимизации управления					
d6-00	Несущая частота	0,5 кГц ~ 16,0 кГц	Зависит от модели	☆	
d6-02	Режим модуляции PWM	0: асинхронная модуляция 1: Синхронная модуляция	0	*	
d6-03	Регулировка несущей частоты с температурой	0: Нет 1: Да	1	☆	
d6-04	Выбор режима компенсации мертвой зоны	0: Без компенсации 1: Режим компенсации 1 2: Режим компенсации 2	1	☆	
d6-05	Случайная глубина PWM	0: Случайная PWM не действует 1~10: Случайная глубина PWM несущей частоты	0	☆	
d6-06	Компенсация обнаружения тока	0~100	0	*	
d6-07	выбор режима SVC	1: Режим SVC 1 2: Режим SVC 2	2		
	Групі	та U0: стандартные параметры конт	роля		
U0-00	Рабочая частота	0.00~300.00 Γц (b0-11 = 2)	-	•	
U0-01	Установленная частота	0.00~300.00 Гц (b0-11 = 1)	-	•	
U0-02	Напряжение шины постоянного тока	0.0~3000.0 B	-	•	
U0-03	Выходное напряжение	0 B~1140 B	-	•	
U0-04	Выходной ток	$0,00A \sim 655,35 \text{ A}$ (мощность преобразователя частоты ≤ 55 кВт) $0,0A \sim 6553,5 \text{ A}$ (мощность преобразователя частоты> 55 кВт)	-	•	
U0-05	Выходная мощность	0~32767	-	•	
U0-06	Выходной момент	-200.0%~200.0%	-	•	
U0-07	Состояние DI	-0~32767	-	•	
U0-08	DO состояние	0~1023	-	•	

U0-14	Отображение скорости нагрузки	0~65535	-	•
U0-15	Настройка ПИД- регулятора	0~65535	-	•
U0-16	Обратная связь ПИД	0~65535	-	•
U0-17	Отрезок ПЛК	-	-	•
U0-18	Частота входных импульсов	0,00 кГц ~ 100,00 кГц	-	•
U0-19	Скорость обратной связи, единица измерения: 0,01 Гц	-3000,0 Гц ~ 3000,0 Гц -300,00 Гц ~ 300,00 Гц	-	•
U0-20	Оставшееся время работы	0,0 мин ~ 6500,0 мин	-	•
U0-21	Напряжение AI1 перед коррекцией	0,00 B ~ 10,57 B	-	•
U0-22	Напряжение AI2 перед коррекцией	0,00 B ~ 10,57 B	-	•
U0-23	Напряжение AI3 перед коррекцией	-10,57 B ~ 10,57 B	-	•
U0-24	Линейная скорость	0,0 мин ~ 65535 м / мин	-	•
U0-27	Значение настройки связи	-100.00%~100.00%	-	•
U0-28	Действительная обратная связь	-3000,0 Γ _Ц ~ 3000,0 Γ _Ц -300,00 Γ _Ц ~ 300,00 Γ _Ц	-	•
U0-29	Обратная связь энкодера	-3000,0 Гц ~ 3000,0 Гц -300,00 Гц ~ 300,00 Гц	-	
U0-30	Основная частота Х	0,00 Γц ~ 300,00 Γц 0,0 Γц ~ 3000,0 Γц	-	•
U0-31	Вспомогательная частота Y	0,00 Гц ~ 300,00 Гц 0,0 Гц ~ 3000,0 Гц	-	•
U0-33	Положение ротора синхронного двигателя	0.0°~ 359.9°	-	•
U0-34	Температура двигателя	0°C~200°C	-	•
U0-35	Целевой момент	-200.0%~200.0%	-	•
U0-36	Положение резольвера	0~4095	-	•
U0-37	Коэффициент мощности	-	-	•
	<u> </u>	170	<u> </u>	

U0-38	Позиция ABZ	0~65535	-	•	
U0-39	Целевое напряжение разделения V / F	0 В ~ номинальное напряжение двигателя	-	•	
U0-40	Выходное напряжение разделения V / F	0 B ~ номинальное напряжение двигателя	-	•	
U0-41	Визуальный дисплей состояния входа DI	-	-	•	
U0-42	Визуальный дисплей состояния вывода	-	-	•	
U0-43	Визуальный дисплей состояния функции DI 1	-	-	•	
U0-44	Визуальный дисплей состояния функции DI 2	-	-	•	
U0-46	Счетчик фаз Z	-	-	•	
U0-47	Предустановленн ая частота (%)	-100.00%~100.00%	-	•	
U0-48	Предустановленн ая рабочая частота (%)	-100.00%~100.00%	-	•	
U0-49	Рабочее состояние преобразователя частоты	0~65535	-	•	
U0-50	Отправленное значение точечной связи	-100.00%~100.00%	-	•	
U0-51	Полученное значение точечной связи	-100.00%~100.00%	-	•	
Группа А0: системные параметры					
A0-00	Пользовательский пароль	0~65535	0	☆	
A0-01	Номер продукта	Номер продукта преобразователя частоты	В зависимост и от модели	•	
A0-02	Версия ПО	Версия программного обеспечения платы управления	В зависимост и от модели	•	

A0-07	Свойство изменения параметров	0: Модифицируемый 1: Не поддается изменению	0	☆
A0-09	Восстановить настройки по умолчанию	0: нет операции 1: Восстановить настройки по умолчанию, кроме параметров двигателя и записи накопления. 4: Очистить записи	0	*
A0-11	Копирование параметров (Опция)	1: Загрузка параметров в панель. 2: Выгрузка параметров из панели		
	Группа А	т 2: Параметры оптимизации упра	вления 2	
A2-00	Предел тока	50%~200%	150%	☆
A2-01	Выбор ограничения	0~1	1	☆
A2-02	Усиление ограничения	0~100	20	☆
A2-03	Коэффициент компенсации умножения предела тока	50%~200%	50%	☆
A2-04	Предел напряжения	200.0B~2000.0B	760B	☆
A2-05	Выбор предела напряжения	0~1	1	☆
A2-06	Усиление частоты для предела напряжения	0~100	30	☆
A2-07	Усиление напряжения для предела напряжения	0~100	30	☆
A2-08	Порог увеличения частоты для ограничения напряжения	0~50Гц	5Гц	☆
A2-09	Временная константа компенсации скольжения	0.1c~10.0c	0.5c	☆
A2-10	Автоусиление частоты	0~1	0	☆
A2-11	Ток минимального момента привода	10%~100%	50%	☆
A2-12	Ток максимального момента рекуперации	10%~100%	20%	☆
A2-13	Коэффициент КР автоувеличения частоты	0~100	50	☆

A2-14	Коэффициент KI автоувеличения	0~100	50	☆
/_	частоты	0 100	30	
A2-15	Усиление	80~150		☆
	· ·		100	
	момента КоэффициентКР			☆
10.10	отслеживания	0~1000	500	^
A2-16	скорости в			
	закрытом контуре			
	КоэффициентКІ отслеживания			☆
A2-17	скорости в	0~1000	800	
	закрытом контуре			
	Предел тока при		Зависит от	☆
A2-18	работе в закрытом	30%~200%	модели	
	контуре Нижний предел			☆
10.10	тока в режиме	10%~100%	30%	×
A2-19	отслеживания в			
	закрытом контуре			
	Время увеличения	0.5c~3.0c	1.1c	☆
A2-20	напряжения в режиме			
712 20	отслеживания			
	скорости			
A2-21	Время	0.00c~5.00c	1.0c	☆
	размагничивания			
A2-22	Напряжение торможения	650B~800B	760B	☆
	Коэффициент Кр			☆
A2-23	кратковременного	0~100	40	
	прерывания питания			
A2-24	Коэффициент Кі кратковременного	0~100	30	☆
	прерывания питания	100		
A2-25	Время замедления			☆
	при прерывании	0~300.0c	20.0 c	
	питания			

Гарантийный талон

- 1) Гарантийный срок составляет 12 месяцев. В течение гарантийного срока, если изделие выходит из строя или повреждено при условии правильного использования, следуя инструкциям, СИЛИУМ будет отвечать за бесплатный ремонт.
- 2) В течение гарантийного периода ремонт выполняется на платной основе при следующих причинах выхода из строя:
- А. Неправильное использование или ремонт / модификация без предварительного разрешения;
- В. Пожар, наводнение, аномальное напряжение, какие-либо другие и вторичные бедствия;
- С. Повреждение аппаратной части, вызванное падением или транспортировкой после закупки;
- D. Неправильная работа;
- Е. Неисправность, вызванная внешними причинами (внешнее воздействие).
- 3) Если есть какие-либо неисправности или повреждения продукта, пожалуйста, тщательно заполните гарантийную карточку продукта.
- 4) Плата за обслуживание взимается в соответствии с действующими тарифами на обслуживание СИЛИУМ.
- 5) Гарантийная карточка продукта не переиздается. Сохраните карточку и сообщите обслуживающему персоналу при запросе технического обслуживания.
- 6) Если во время обслуживания возникнут какие-либо проблемы, обратитесь непосредственно к официальному представителю СИЛИУМ или напрямую в СИЛИУМ.

 Гарантийная карточка продукта СИЛИУМ

 Информация для покупателей
 Название компании:
 Контактное лицо:

 Почтовый индекс:
 Тел:

 Модель продукта:
 Штрих-кода (Прикрепите здесь):

 Наименование официального представителя:

 Информация о поломке
 (Суть проблемы и информация об условиях работы):